固体力学学报
固體力學學報
고체역학학보
ACTA MECHANICA SOLIDA SINICA
2001年
1期
15-22
,共8页
结构拓扑优化,骨架结构,连续体结构,独立连续拓扑变量,光滑模型,有无复合体,应力%约束
結構拓撲優化,骨架結構,連續體結構,獨立連續拓撲變量,光滑模型,有無複閤體,應力%約束
결구탁복우화,골가결구,련속체결구,독립련속탁복변량,광활모형,유무복합체,응력%약속
根据独立连续拓扑变量概念,建立了桁架和平面膜结构拓扑优化的有无复合体模型,从而不引入过滤函数实现拓扑变量在连续型和离散型之间的转换.推导了有无复合体杆单元的面积与膜单元的厚度同重量、单元刚度阵都是“有单元”和“无单元”相应量的线性组合,进而把这一线性关系延拓到许用应力.借助于有无复合体建立了在应力约束下骨架和连续体结构拓扑优化的统一模型,同时提出了求解这一模型的有效算法,获得了令人满意的计算结果.
根據獨立連續拓撲變量概唸,建立瞭桁架和平麵膜結構拓撲優化的有無複閤體模型,從而不引入過濾函數實現拓撲變量在連續型和離散型之間的轉換.推導瞭有無複閤體桿單元的麵積與膜單元的厚度同重量、單元剛度陣都是“有單元”和“無單元”相應量的線性組閤,進而把這一線性關繫延拓到許用應力.藉助于有無複閤體建立瞭在應力約束下骨架和連續體結構拓撲優化的統一模型,同時提齣瞭求解這一模型的有效算法,穫得瞭令人滿意的計算結果.
근거독립련속탁복변량개념,건립료항가화평면막결구탁복우화적유무복합체모형,종이불인입과려함수실현탁복변량재련속형화리산형지간적전환.추도료유무복합체간단원적면적여막단원적후도동중량、단원강도진도시“유단원”화“무단원”상응량적선성조합,진이파저일선성관계연탁도허용응력.차조우유무복합체건립료재응력약속하골가화련속체결구탁복우화적통일모형,동시제출료구해저일모형적유효산법,획득료령인만의적계산결과.
According to the idea of independent and continuous topo logicalvariables, a uniform exist-null combined model of the bar element and t he membrane element for the topological optimization is constructed to implement the transformation between continuous and discrete topological variables withou t using the filter function. It is derived that the area of bar and the thicknes s of membrane with the weight or the stiffness matrix are all the linear combina tions of the corresponding quantities of the ‘exist element’ and the ‘null el ement’. Then this linear relation is extended to the allowable stress. The uniform mathematical model of the topological optimization of skeleton and c ontinuum structure with stress constraint is established in terms of the exist- null combination. At the same time an effective algorithm is proposed to solve t he uniform mathematical model. In line with the zero approximation of the stress constraint function, a solution of topological optimization with stress constra int of single loading case is obtained from the strength condition. Then, the av erage value of each topological variable under all of the loading cases is taken as a solution of multiple loading cases. Finally, a self-adaptive algorithm gi ves the transformation of the continuous topological variable to discrete variab le according to a doorsill. It can get satisfactory computational results with r apid and stable convergence. This work also shows that the presence of independe nt and continuous topological variable is valuable to the research of structural topology optimization.