农业工程学报
農業工程學報
농업공정학보
2010年
3期
222-226,封3
,共6页
农作物%图像处理%独立分量分析%玉米%籽粒%胚部特征
農作物%圖像處理%獨立分量分析%玉米%籽粒%胚部特徵
농작물%도상처리%독립분량분석%옥미%자립%배부특정
crops%image processing%independent component analysis%maize (Zea mays L.)%kernel%characteristics of maize embryo
玉米胚部特征是重要的农艺性状之一,目前主要通过手工方法进行测量.为实现通过机器视觉图像处理的方法进行玉米胚部特征的自动检测,提出一种基于独立分量分析ICA的玉米胚部测量方法,并建立了检测模型.首先对玉米籽粒的RGB图像进行ICA分析,发现具有最大熵的独立分量IC代表着胚部与籽粒其他部分的对比.根据此IC能够实现玉米胚部的准确分割.然后,提取了玉米胚部面积等9个特征.和手工检测结果相比,面积误差为0.7%,决定系数达0.984,其他8个特征的误差总体也都在2%以下.与前人的基于颜色模型区域生长的检测结果比较,检测准确度有明显提高.表明采用基于ICA的方法检测的结果准确可靠,能够用于玉米胚部的自动检测.
玉米胚部特徵是重要的農藝性狀之一,目前主要通過手工方法進行測量.為實現通過機器視覺圖像處理的方法進行玉米胚部特徵的自動檢測,提齣一種基于獨立分量分析ICA的玉米胚部測量方法,併建立瞭檢測模型.首先對玉米籽粒的RGB圖像進行ICA分析,髮現具有最大熵的獨立分量IC代錶著胚部與籽粒其他部分的對比.根據此IC能夠實現玉米胚部的準確分割.然後,提取瞭玉米胚部麵積等9箇特徵.和手工檢測結果相比,麵積誤差為0.7%,決定繫數達0.984,其他8箇特徵的誤差總體也都在2%以下.與前人的基于顏色模型區域生長的檢測結果比較,檢測準確度有明顯提高.錶明採用基于ICA的方法檢測的結果準確可靠,能夠用于玉米胚部的自動檢測.
옥미배부특정시중요적농예성상지일,목전주요통과수공방법진행측량.위실현통과궤기시각도상처리적방법진행옥미배부특정적자동검측,제출일충기우독립분량분석ICA적옥미배부측량방법,병건립료검측모형.수선대옥미자립적RGB도상진행ICA분석,발현구유최대적적독립분량IC대표착배부여자립기타부분적대비.근거차IC능구실현옥미배부적준학분할.연후,제취료옥미배부면적등9개특정.화수공검측결과상비,면적오차위0.7%,결정계수체0.984,기타8개특정적오차총체야도재2%이하.여전인적기우안색모형구역생장적검측결과비교,검측준학도유명현제고.표명채용기우ICA적방법검측적결과준학가고,능구용우옥미배부적자동검측.
The characteristics of maize embryo are important agronomic traits of maize, which are mainly measured by hand. In order to implement automatic extraction of the features of maize embryo by computer vision and image processing method, a new method for measuring embryo based on independent component analysis (ICA) was developed, and its testing model was also established. RGB images of 40 maize kernels were scanned with 600 DPI resolutions using a flat scanner. After segmenting embryo part from other parts of maize kernels using the independent component with the maximum entropy, the embryo area and the other 8 embryo characteristics of these maize kernels were extracted. Compared with the manual measured results as ground-truth reference, the area error rate for our proposed method was 0.7%, and determination coefficient of the manual regression to the predicted reached 0.984, and error rates of other 8 characteristics were generally below 2%. When compared with citations of those based on the region growing of color models, our proposed method significantly increased detection accuracy. Obviously, the proposed method based on ICA is accurate and reliable, and can be used to automatic detection of maize embryo.