计算机工程
計算機工程
계산궤공정
COMPUTER ENGINEERING
2010年
7期
230-232
,共3页
三维高斯赫密特矩%运动目标分割%水平集分割
三維高斯赫密特矩%運動目標分割%水平集分割
삼유고사혁밀특구%운동목표분할%수평집분할
3D Orthogonal Gassian-Hermite Moments(3DOGHM)%motion object segmentation%level set segmentation
针对帧间差分检测运动区域抗噪性差、某些部位无法完全恢复、所提取的运动目标容易产生空洞的问题,提出一种基于水平集分割的3DOGHM运动目标检测算法,在3DOGHM分离运动区域及背景的基础上,采用一种改进的水平集进化模型进行运动目标分割.实验结果表明,该算法抗干扰能力强,可以更准确、完整地检测出运动目标.
針對幀間差分檢測運動區域抗譟性差、某些部位無法完全恢複、所提取的運動目標容易產生空洞的問題,提齣一種基于水平集分割的3DOGHM運動目標檢測算法,在3DOGHM分離運動區域及揹景的基礎上,採用一種改進的水平集進化模型進行運動目標分割.實驗結果錶明,該算法抗榦擾能力彊,可以更準確、完整地檢測齣運動目標.
침대정간차분검측운동구역항조성차、모사부위무법완전회복、소제취적운동목표용역산생공동적문제,제출일충기우수평집분할적3DOGHM운동목표검측산법,재3DOGHM분리운동구역급배경적기출상,채용일충개진적수평집진화모형진행운동목표분할.실험결과표명,해산법항간우능력강,가이경준학、완정지검측출운동목표.
According to the fact that motion region detected by commonly adopted frame difference has bad noise resistance ability, and cavity exits, this paper proposes the method of 3D Orthogonal Gassian-Hermite Moments(3DOGHM) for detecting moving objects based on level set segementation. This method uses 3DOGHM separate motion region and background, and adopts an improved level set segmentation motion object. Experimental results show that this algorithm has strong anti-interference ability and can detect motion object much completely and the problem of existing cavity is improved greatly.