中华放射肿瘤学杂志
中華放射腫瘤學雜誌
중화방사종류학잡지
CHINESE JOURNAL OF RADIATION ONCOLOGY
2010年
4期
346-349
,共4页
姜庆丰%李光俊%徐庆丰%蒋晓芹%柏森
薑慶豐%李光俊%徐慶豐%蔣曉芹%柏森
강경봉%리광준%서경봉%장효근%백삼
放射疗法%运动靶区%体层摄影术,X线计算机%图像融合
放射療法%運動靶區%體層攝影術,X線計算機%圖像融閤
방사요법%운동파구%체층섭영술,X선계산궤%도상융합
Radiotherapy%Moving target%Tomography,X-ray computed%Imaging fusion
目的 通过运动靶区的模拟,探讨CT扫描对运动肿瘤靶区勾画范围准确性的影响,寻找提高运动靶区准确显示的方法.方法 以不同频率和振幅做简谐运动的靶区在CT机上扫描,每组分别重复扫描24次,然后对组内24次扫描图像每2、3次扫描随机分组融合.在Pinnacle计划系统中勾画靶区,分析运动对靶区沿运动方向长度的影响.结果 随运动幅度增加,CT扫描所得球形靶区最大体积与方形靶区最大长度都增加,球形靶区最小体积与方形靶区最小长度减小.运动频率对靶体积及长度影响较运动幅度小.对静止扫描长度为3.3 cm、运动频率为20和幅度为2 cm的方形运动靶区24次扫描中最大长度5.1 cm是最小长度2.1 cm的2.4倍.对组内24次扫描图像每1、2、3次融合,融合后靶区长度平均值±标准差分别为(3.77±1.20)、(4.18±0.91)、(4.52±0.59)cm.结论 随运动频率和幅度增加,CT扫描图像与靶区整个运动范围偏差增大.随扫描次数增加,融合所得靶区长度逐渐增加.在没有条件采取措施控制靶区运动情况下,重复CT扫描能简便有效地提高运动靶区勾画范围准确性.
目的 通過運動靶區的模擬,探討CT掃描對運動腫瘤靶區勾畫範圍準確性的影響,尋找提高運動靶區準確顯示的方法.方法 以不同頻率和振幅做簡諧運動的靶區在CT機上掃描,每組分彆重複掃描24次,然後對組內24次掃描圖像每2、3次掃描隨機分組融閤.在Pinnacle計劃繫統中勾畫靶區,分析運動對靶區沿運動方嚮長度的影響.結果 隨運動幅度增加,CT掃描所得毬形靶區最大體積與方形靶區最大長度都增加,毬形靶區最小體積與方形靶區最小長度減小.運動頻率對靶體積及長度影響較運動幅度小.對靜止掃描長度為3.3 cm、運動頻率為20和幅度為2 cm的方形運動靶區24次掃描中最大長度5.1 cm是最小長度2.1 cm的2.4倍.對組內24次掃描圖像每1、2、3次融閤,融閤後靶區長度平均值±標準差分彆為(3.77±1.20)、(4.18±0.91)、(4.52±0.59)cm.結論 隨運動頻率和幅度增加,CT掃描圖像與靶區整箇運動範圍偏差增大.隨掃描次數增加,融閤所得靶區長度逐漸增加.在沒有條件採取措施控製靶區運動情況下,重複CT掃描能簡便有效地提高運動靶區勾畫範圍準確性.
목적 통과운동파구적모의,탐토CT소묘대운동종류파구구화범위준학성적영향,심조제고운동파구준학현시적방법.방법 이불동빈솔화진폭주간해운동적파구재CT궤상소묘,매조분별중복소묘24차,연후대조내24차소묘도상매2、3차소묘수궤분조융합.재Pinnacle계화계통중구화파구,분석운동대파구연운동방향장도적영향.결과 수운동폭도증가,CT소묘소득구형파구최대체적여방형파구최대장도도증가,구형파구최소체적여방형파구최소장도감소.운동빈솔대파체적급장도영향교운동폭도소.대정지소묘장도위3.3 cm、운동빈솔위20화폭도위2 cm적방형운동파구24차소묘중최대장도5.1 cm시최소장도2.1 cm적2.4배.대조내24차소묘도상매1、2、3차융합,융합후파구장도평균치±표준차분별위(3.77±1.20)、(4.18±0.91)、(4.52±0.59)cm.결론 수운동빈솔화폭도증가,CT소묘도상여파구정개운동범위편차증대.수소묘차수증가,융합소득파구장도축점증가.재몰유조건채취조시공제파구운동정황하,중복CT소묘능간편유효지제고운동파구구화범위준학성.
Objective To find a method to improve the range accuracy of moving target such as peripheral lung tumors, since a single CT snapshot may not be accurate during the treatment process.Methods A simple harmonic motion phantom, embedded with a cube and a circular ball, was used to simulate the tumor motion. Individualized moving targets were scanned 24 times with different amplitudes and frequencies. Then the images were fused from every 1, 2 or 3 sets of CT scans. The GTV volume variation of circular target and the length variation of the cube target along the z axis were contoured and analyzed. Results As motion amplitude increased, the maximum of both circular target volume and cube target length was increased, while the minimum of the factors was decreased. Motion frequency affected the target volume less than amplitude. For a cube target with the length of 3.3 cm at stationary phase, when motion frequencies was 20 and motion amplitude was 2 cm, the maximal length was 2. 4 times of the minimal length (5. 1 cm vs. 2. 1 cm). When it came to the cube target groups fused from every 1,2 and 3 sets of CT scans, the average length and standard deviation were (3.77 ± 1.20) cm, (4.18 ±0. 91)cm and (4.52 ±0. 59) cm, respectively. With the increase of fused scan number, targets became bigger, the standard deviation decreased, and the change of center positions was decreased. Conclusions The motion amplitude, frequency and the number of CT scans are the main factors affecting target definition, though, the optimized scanning phase is not certained. When 4DCT and respiration gating technique are not available,the efficient and practical method to solve this problem is to scan the target three or more times and fuse them in planning system, which will generate a larger, more reproducible GTV volume for moving targets.