哈尔滨商业大学学报(自然科学版)
哈爾濱商業大學學報(自然科學版)
합이빈상업대학학보(자연과학판)
JOURNAL OF HARBIN UNIVERSITY OF COMMERCE(NATURAL SCIENCES EDITION)
2007年
3期
370-371,384
,共3页
半质环%半单纯环%kothe半单纯环%交换环
半質環%半單純環%kothe半單純環%交換環
반질배%반단순배%kothe반단순배%교환배
给出下列交换性定理1)设R为半质环,若对R中任意元x,y,存在整数m=m(y)≥0,n=n(y)≥0,m≥n,fx,y(t)∈t2Z[t]使得fx,y(xmy)-yxn∈Z(R)或fx,y(yxm)-yxn∈Z(R),则R为交换环.2)设R为k(o)the半单纯环,若对R中任意x,y,存在整数m=m(x,y)≥n=n(x,y)≥0,多项式fx,y(t)∈t2Z[t]使得fx,y(xmy)-yxn∈Z(R)或fx,y(yxm)-yxn∈Z(R),则R为交换环.
給齣下列交換性定理1)設R為半質環,若對R中任意元x,y,存在整數m=m(y)≥0,n=n(y)≥0,m≥n,fx,y(t)∈t2Z[t]使得fx,y(xmy)-yxn∈Z(R)或fx,y(yxm)-yxn∈Z(R),則R為交換環.2)設R為k(o)the半單純環,若對R中任意x,y,存在整數m=m(x,y)≥n=n(x,y)≥0,多項式fx,y(t)∈t2Z[t]使得fx,y(xmy)-yxn∈Z(R)或fx,y(yxm)-yxn∈Z(R),則R為交換環.
급출하렬교환성정리1)설R위반질배,약대R중임의원x,y,존재정수m=m(y)≥0,n=n(y)≥0,m≥n,fx,y(t)∈t2Z[t]사득fx,y(xmy)-yxn∈Z(R)혹fx,y(yxm)-yxn∈Z(R),칙R위교환배.2)설R위k(o)the반단순배,약대R중임의x,y,존재정수m=m(x,y)≥n=n(x,y)≥0,다항식fx,y(t)∈t2Z[t]사득fx,y(xmy)-yxn∈Z(R)혹fx,y(yxm)-yxn∈Z(R),칙R위교환배.