光学精密工程
光學精密工程
광학정밀공정
OPTICS AND PRECISION ENGINEERING
2010年
3期
570-578
,共9页
超薄镜%主动支撑%致动器%面形校正%序列二次规划法%有限元法
超薄鏡%主動支撐%緻動器%麵形校正%序列二次規劃法%有限元法
초박경%주동지탱%치동기%면형교정%서렬이차규화법%유한원법
ultra-thin mirrors%active support%actuator%figure correction%Sequential Quadratic Programming (SQP)%Finite Element Method(FEM)
为了研究主动支撑条件对超薄镜面形误差的校正能力,以一个直径0.5 m的超薄镜为例进行了面形校正的仿真分析及实验验证.分析了致动器作用力与超薄镜面形的关系,引入了一些需校正的面形误差,如初级球差、慧差、像散及重力变形等,确定了致动器作用力的优化目标,用求解非线性约束问题的优化算法--序列二次规划法计算了校正面形误差所需的致动器作用力,得到了超薄镜面形残余误差.仿真分析表明,对于归一化系数为1的初始球差、慧差、像散以及它们的叠加,用本文提供的致动器排布方式可以将面形误差校正到RMSλ/24以内,且对初级像散的校正能力最强,慧差和球差次之;竖直放置时的重力变形加上3种低阶像差的叠加也可被校正到RMSλ/24.在得到主动支撑的0.5 m实验镜的初始面形结果后,重新计算了优化力和面形误差,结果表明,计算结果和实际装调结果基本一致,RMS约为λ/7.计算分析了超薄镜面形未能达到预期目标的原因,提出了适当增加致动器和提高超薄镜初始面形精度的改进方案,并最终使超薄镜面形达到RMSλ/20的要求.
為瞭研究主動支撐條件對超薄鏡麵形誤差的校正能力,以一箇直徑0.5 m的超薄鏡為例進行瞭麵形校正的倣真分析及實驗驗證.分析瞭緻動器作用力與超薄鏡麵形的關繫,引入瞭一些需校正的麵形誤差,如初級毬差、慧差、像散及重力變形等,確定瞭緻動器作用力的優化目標,用求解非線性約束問題的優化算法--序列二次規劃法計算瞭校正麵形誤差所需的緻動器作用力,得到瞭超薄鏡麵形殘餘誤差.倣真分析錶明,對于歸一化繫數為1的初始毬差、慧差、像散以及它們的疊加,用本文提供的緻動器排佈方式可以將麵形誤差校正到RMSλ/24以內,且對初級像散的校正能力最彊,慧差和毬差次之;豎直放置時的重力變形加上3種低階像差的疊加也可被校正到RMSλ/24.在得到主動支撐的0.5 m實驗鏡的初始麵形結果後,重新計算瞭優化力和麵形誤差,結果錶明,計算結果和實際裝調結果基本一緻,RMS約為λ/7.計算分析瞭超薄鏡麵形未能達到預期目標的原因,提齣瞭適噹增加緻動器和提高超薄鏡初始麵形精度的改進方案,併最終使超薄鏡麵形達到RMSλ/20的要求.
위료연구주동지탱조건대초박경면형오차적교정능력,이일개직경0.5 m적초박경위례진행료면형교정적방진분석급실험험증.분석료치동기작용력여초박경면형적관계,인입료일사수교정적면형오차,여초급구차、혜차、상산급중력변형등,학정료치동기작용력적우화목표,용구해비선성약속문제적우화산법--서렬이차규화법계산료교정면형오차소수적치동기작용력,득도료초박경면형잔여오차.방진분석표명,대우귀일화계수위1적초시구차、혜차、상산이급타문적첩가,용본문제공적치동기배포방식가이장면형오차교정도RMSλ/24이내,차대초급상산적교정능력최강,혜차화구차차지;수직방치시적중력변형가상3충저계상차적첩가야가피교정도RMSλ/24.재득도주동지탱적0.5 m실험경적초시면형결과후,중신계산료우화력화면형오차,결과표명,계산결과화실제장조결과기본일치,RMS약위λ/7.계산분석료초박경면형미능체도예기목표적원인,제출료괄당증가치동기화제고초박경초시면형정도적개진방안,병최종사초박경면형체도RMSλ/20적요구.
In order to study correcting capabilities for figure errors of ultra-thin mirrors with active supports, a 0.5 m demonstration mirror is designed and tested. Firstly, the relevant relations between actuator forces and figure forms are analyzed, and some lower-order figure errors, such as primary spherical aberration, coma, astigmatism and distortion due to gravity, are introduced. Then, the optimization objective is set up, and the Sequential Quadratic Programming (SQP) method for nonlinear constraint problem is applied to calculating optimum actuator forces. The residual figure errors of the ultra-thin mirror are given. Simulation analysis shows that by using the actuator arrangement proposed in this paper,the normalized primary spherical aberration, coma, astigmatism as well as their summation can be corrected to be less than λ/24 rms,and the correcting capability for astigmatism is the strongest and for spherical aberration and coma are less; moreover,the deformation due to gravity combined with the summation of above three lower-order aberrations can also be corrected to be less than λ/24 rms. After the actual surface errors from the interferometry based on the 0.5 m demonstration mirror are given, the optimum actuator forces and form errors are solved. The results show that the surface quality is about λ/7 rms ,which is in accord with the test data. The causes that the figure error can not meet the desired objective are analyzed,then an improved method is proposed. By the method, the figure error of the 0.5 m ultra-thin mirror with active supports satisfies the requirements equal to or less than λ/20 rms.