发光学报
髮光學報
발광학보
CHINESE JOURNAL OF LUMINESCENCE
2008年
4期
670-674
,共5页
声学极化子%基态能量%有效质量%自陷
聲學極化子%基態能量%有效質量%自陷
성학겁화자%기태능량%유효질량%자함
acoustic polaron%ground state energy%effective mass%self-trapping
自陷电子对了解光电材料的光学性质非常重要.近些年来,形变晶格中电子自陷的问题受到研究人员的广泛关注.电子既与声学模耦合,也与光学模相互作用,但电子由自由态向自陷态的转变缘于近程的电子-声学声子耦合.研究表明:声学极化子在大多数半导体以及Ⅲ-Ⅴ族化合物,甚至碱卤化物中都不可能自陷.另一方面,电子-声子耦合在束缚结构,如二维、一维系统中,会有所增强.换言之,电子在低维结构中更容易自陷.Farias等人指出:声学极化子在二维系统中自陷的临界电子-声子耦合常数为定值,不随声子截止波矢的变化而改变.这种结论在物理上不尽合理.通过计算二维系统中的声学极化子基态能量和有效质量,讨论了二维声学极化子自陷问题.研究发现,二维声学极化子自陷转变的临界耦合常数随声子截止波矢的增加朝电子-声子耦合较弱的方向变化.这一特征与前人关于体和表面极化子研究获得的结论定性一致.所得二维声学极化子基态能量的表达式与Farias 等人一致,但自陷的结果与Farias 等人的结果在定性和定量上均有不同,我们认为Farias等人关于二维声学极化子自陷转变点的确定方式有不妥之处.通过改进自陷转变点的确定方式,得到了在物理上更合理的结果.
自陷電子對瞭解光電材料的光學性質非常重要.近些年來,形變晶格中電子自陷的問題受到研究人員的廣汎關註.電子既與聲學模耦閤,也與光學模相互作用,但電子由自由態嚮自陷態的轉變緣于近程的電子-聲學聲子耦閤.研究錶明:聲學極化子在大多數半導體以及Ⅲ-Ⅴ族化閤物,甚至堿滷化物中都不可能自陷.另一方麵,電子-聲子耦閤在束縳結構,如二維、一維繫統中,會有所增彊.換言之,電子在低維結構中更容易自陷.Farias等人指齣:聲學極化子在二維繫統中自陷的臨界電子-聲子耦閤常數為定值,不隨聲子截止波矢的變化而改變.這種結論在物理上不儘閤理.通過計算二維繫統中的聲學極化子基態能量和有效質量,討論瞭二維聲學極化子自陷問題.研究髮現,二維聲學極化子自陷轉變的臨界耦閤常數隨聲子截止波矢的增加朝電子-聲子耦閤較弱的方嚮變化.這一特徵與前人關于體和錶麵極化子研究穫得的結論定性一緻.所得二維聲學極化子基態能量的錶達式與Farias 等人一緻,但自陷的結果與Farias 等人的結果在定性和定量上均有不同,我們認為Farias等人關于二維聲學極化子自陷轉變點的確定方式有不妥之處.通過改進自陷轉變點的確定方式,得到瞭在物理上更閤理的結果.
자함전자대료해광전재료적광학성질비상중요.근사년래,형변정격중전자자함적문제수도연구인원적엄범관주.전자기여성학모우합,야여광학모상호작용,단전자유자유태향자함태적전변연우근정적전자-성학성자우합.연구표명:성학겁화자재대다수반도체이급Ⅲ-Ⅴ족화합물,심지감서화물중도불가능자함.령일방면,전자-성자우합재속박결구,여이유、일유계통중,회유소증강.환언지,전자재저유결구중경용역자함.Farias등인지출:성학겁화자재이유계통중자함적림계전자-성자우합상수위정치,불수성자절지파시적변화이개변.저충결론재물리상불진합리.통과계산이유계통중적성학겁화자기태능량화유효질량,토론료이유성학겁화자자함문제.연구발현,이유성학겁화자자함전변적림계우합상수수성자절지파시적증가조전자-성자우합교약적방향변화.저일특정여전인관우체화표면겁화자연구획득적결론정성일치.소득이유성학겁화자기태능량적표체식여Farias 등인일치,단자함적결과여Farias 등인적결과재정성화정량상균유불동,아문인위Farias등인관우이유성학겁화자자함전변점적학정방식유불타지처.통과개진자함전변점적학정방식,득도료재물리상경합리적결과.
The trapping electrons have been used to explore the luminous property of the photoelectric materials. The self-trapping of an electron in a deformable lattice has been maintained interests of many scientists in the past decades. For weak electron-phonon (e-p) coupling, one expects that the electron behaves as a quasi-free particle ("free polaron") and should be de-localized over all sites, whereas for very strong coupling it is conceivable that the electron is self-trapped by phonons. Various calculations for the ground-state energies of the polarons as functions of the e-p coupling strength have led to a transition from the quasi-free state to the self-trapped state. This transition phenomenon was also called "phase transition", though it is not a real phase transition in the general sense. An electron interacts with the acoustic and optical modes of the lattice vibration in a polar crystal. However, the abrupt change of the polaron state from the quasi-free state to the self-trapping state is usually caused by the short-range acoustic interaction, i.e. the electron-longitudinal-acoustic-phonon (e-LA-p) coupling, but not by the long range longitudinal-optical (LO)-phonon interaction. It has been indicated that the acoustic polarons in three-dimensional (3D) bulk materials are difficult to be trapped in most semiconductors and Ⅲ-Ⅴ compounds, even in alkali halides. Otherwise, the e-p coupling effects would be substantially enhanced in confined structures, such as two-dimensional (2D) and one-dimensional (1D) systems, so that the self-trapping transition may be easier to be realized. Farias et al pointed out that the critical e-LA-p coupling constant of the self-trapping transition of acoustic polarons in 2D systems is a certain value and independent of the cutoff wave vector. This conclusion is doubtful in Physics. The ground state energy and effective mass of the acoustic polaron in 2D systems are calculated by using the Huybrechts-like approach in two-step according to the weak and strong e-p coupling ranges. The self-trapping of the 2D acoustic polaron is discussed. The new self-trapping transition point is determined by the intersection point of the lines of ground state energies in weak and strong coupling ranges. It is found that the critical coupling constant of the self-trapping transition of the 2D acoustic polaron shifts toward the weaker e-p coupling with the increasing cutoff wave vector. The characters of the self-trapping of the 2D acoustic polron are qualitative consistent with the previous works of surface polaron and 3D acoustic polaron. There are both the quantitative and the qualitative differences in the critical coupling constants of the self-trapping of the 2D acoustic polarons obtained in this paper and the results given by Farias et al. Our results are more intelligible than that given by Farias et al in sense of the physics.