稀有金属材料与工程
稀有金屬材料與工程
희유금속재료여공정
RARE METAL MATERIALS AND ENGINEERNG
2009年
z2期
1079-1082
,共4页
热电材料%Half-Heusler%机械合金化%放电等离子体烧结
熱電材料%Half-Heusler%機械閤金化%放電等離子體燒結
열전재료%Half-Heusler%궤계합금화%방전등리자체소결
thermoelectric material%Half-Heusler%MA%SPS
研究了TiNiSn基Half-Heusler热电化合物的机械合金化(MA)结合放电等离子体烧结(SPS)制备工艺.实验以Ti、Ni、Sn单质粉末为原料,研究了MA和SPS过程中的化学反应与相组成的变化以及所制备的块体材料的电学性能,获得以下主要结果:(1)MA处理后的粉末经过SPS固化后可转变为TiNiSn化合物,但是MA难以直接合成TiNiSn化合物粉末,其原因在于Ni和Sn在球磨过程中较容易生成化合物Ni_3Sn_4;(2)优化MA时间和适量增加Ti的含量有利于提高SPS样品中的TiNiSn化合物含量,本研究获得的TiNiSn相纯度高达90%;(3)最佳条件下制备的TiNiSn化合物块体材料呈n型,测试范围内其功率因子最高可达到1380 mW/m·K~2.
研究瞭TiNiSn基Half-Heusler熱電化閤物的機械閤金化(MA)結閤放電等離子體燒結(SPS)製備工藝.實驗以Ti、Ni、Sn單質粉末為原料,研究瞭MA和SPS過程中的化學反應與相組成的變化以及所製備的塊體材料的電學性能,穫得以下主要結果:(1)MA處理後的粉末經過SPS固化後可轉變為TiNiSn化閤物,但是MA難以直接閤成TiNiSn化閤物粉末,其原因在于Ni和Sn在毬磨過程中較容易生成化閤物Ni_3Sn_4;(2)優化MA時間和適量增加Ti的含量有利于提高SPS樣品中的TiNiSn化閤物含量,本研究穫得的TiNiSn相純度高達90%;(3)最佳條件下製備的TiNiSn化閤物塊體材料呈n型,測試範圍內其功率因子最高可達到1380 mW/m·K~2.
연구료TiNiSn기Half-Heusler열전화합물적궤계합금화(MA)결합방전등리자체소결(SPS)제비공예.실험이Ti、Ni、Sn단질분말위원료,연구료MA화SPS과정중적화학반응여상조성적변화이급소제비적괴체재료적전학성능,획득이하주요결과:(1)MA처리후적분말경과SPS고화후가전변위TiNiSn화합물,단시MA난이직접합성TiNiSn화합물분말,기원인재우Ni화Sn재구마과정중교용역생성화합물Ni_3Sn_4;(2)우화MA시간화괄량증가Ti적함량유리우제고SPS양품중적TiNiSn화합물함량,본연구획득적TiNiSn상순도고체90%;(3)최가조건하제비적TiNiSn화합물괴체재료정n형,측시범위내기공솔인자최고가체도1380 mW/m·K~2.
The fabrication of TiNiSn-based Half-Heusler thermoelectric compound by mechanical alloying (MA) and spark plasma sintering (SPS) was investigated. Pure titanium, nickel and tin powders were used as starting materials. Phase transitions in MA and SPS processes were studied as well as the electrical properties of the bulk material. The results are as follows: (1) TiNiSn compound can not be synthesized directly from the starting materials through MA in our experiment due to the easy formation of Ni_3Sn_4 in the MA process, but such powder derived from MA can form TiNiSn compound in the following SPS. (2) Proper milling time and optimal titanium content can improve the TiNiSn content of the bulk material, and the purity of the bulk material reaches 90%. (3) The TiNiSn bulk material synthesized under the optimal condition shows n-type semiconductivity. In the measured temperature range, its power factor reaches 1380 mW/m·K~2.