高校化学工程学报
高校化學工程學報
고교화학공정학보
JOURNAL OF CHEMICAL ENGINEERING OF CHINESE UNIVERSITIES
2010年
1期
41-46
,共6页
环管反应器%两相流%传热模型%计算流体力学
環管反應器%兩相流%傳熱模型%計算流體力學
배관반응기%량상류%전열모형%계산류체역학
tubular loop reactor%two-fluid model%transfer heat model%CFD
为了对环管反应器内传热规律进行研究,在Euler-Euler双流体动量传递模型和环管反应器聚合传质模型的基础上,考虑了环管反应器内传热过程,建立了环管反应器传热数学模型,对工业烯烃聚合环管反应器内流动、传热和传质及聚合反应过程进行了研究.反应器内浆液温度的模拟值与工业现场值吻合,说明所建立的环管反应器传热数学模型是有效的.模拟结果表明,环管反应器温度与物料浓度存在不均匀分布.在上升段,温度分布呈中心对称,在弯管段不再呈中心对称,下降段的温度因弯管段的不均匀分布而不再呈中心对称分布;随着浆液入口速度或入口固体颗粒相体积分数的增加,环管反应器上升直管段,弯管段以及下降直管段温度降低;管壁冷却水温度不同,对环管反应器内冷却能力也不同,在反应器内相同的释放热量情况下,冷却水温度越低,对反应器内物料的冷却能力就越强.
為瞭對環管反應器內傳熱規律進行研究,在Euler-Euler雙流體動量傳遞模型和環管反應器聚閤傳質模型的基礎上,攷慮瞭環管反應器內傳熱過程,建立瞭環管反應器傳熱數學模型,對工業烯烴聚閤環管反應器內流動、傳熱和傳質及聚閤反應過程進行瞭研究.反應器內漿液溫度的模擬值與工業現場值吻閤,說明所建立的環管反應器傳熱數學模型是有效的.模擬結果錶明,環管反應器溫度與物料濃度存在不均勻分佈.在上升段,溫度分佈呈中心對稱,在彎管段不再呈中心對稱,下降段的溫度因彎管段的不均勻分佈而不再呈中心對稱分佈;隨著漿液入口速度或入口固體顆粒相體積分數的增加,環管反應器上升直管段,彎管段以及下降直管段溫度降低;管壁冷卻水溫度不同,對環管反應器內冷卻能力也不同,在反應器內相同的釋放熱量情況下,冷卻水溫度越低,對反應器內物料的冷卻能力就越彊.
위료대배관반응기내전열규률진행연구,재Euler-Euler쌍류체동량전체모형화배관반응기취합전질모형적기출상,고필료배관반응기내전열과정,건립료배관반응기전열수학모형,대공업희경취합배관반응기내류동、전열화전질급취합반응과정진행료연구.반응기내장액온도적모의치여공업현장치문합,설명소건립적배관반응기전열수학모형시유효적.모의결과표명,배관반응기온도여물료농도존재불균균분포.재상승단,온도분포정중심대칭,재만관단불재정중심대칭,하강단적온도인만관단적불균균분포이불재정중심대칭분포;수착장액입구속도혹입구고체과립상체적분수적증가,배관반응기상승직관단,만관단이급하강직관단온도강저;관벽냉각수온도불동,대배관반응기내냉각능력야불동,재반응기내상동적석방열량정황하,냉각수온도월저,대반응기내물료적냉각능력취월강.
Based on the mathematic model considering the two-fluid momentum transfer, mass transfer, heat transfer and reaction kinetics of propylene polymerization, the heat transfer characteristics in the propylene polymerization tubular loop reactor were studied. The simulated fluid temperatures along the whole reactor agree well with that measured from the industrial loop reactor, which indicates that the presented mathematic model is available to describe the heat transfer in the tubular loop reactor. The results show that the temperature distributions are different in the upstream-section, curve-section and downstream-section of the tubular loop reactor. In upstream-section, the temperature distribution is centro-symmetrical, but in the curve-section and downstream-section, they are not centro-symmetrical. The temperatures in the upstream-section, curve-section and downstream-section of the tubular loop reactor reduce with the increase of inlet slurry velocity and solid volume fraction; and the cooling ability of the cooling jacket mounted on the outside of the straight part of the tubular loop reactor increases with the decrease of cooling water temperature.