应用数学
應用數學
응용수학
MATHEMATICA APPLICATA
2009年
3期
670-675
,共6页
区域分裂法%非线性抛物方程%扩张混合元%并行迭代法
區域分裂法%非線性拋物方程%擴張混閤元%併行迭代法
구역분렬법%비선성포물방정%확장혼합원%병행질대법
Domain decomposition method%Nonlinear parabolic equations%Expanded mixed finite element%Parallel iterative procedure
针对非线性抛物方程,给出了全离散的扩张混合元格式,利用一个建立在非重叠型区域分裂技巧上的并行迭代法求解了最后的非线性代数方程组,证明了迭代法的收敛性并给出了最优阶的误差估计.
針對非線性拋物方程,給齣瞭全離散的擴張混閤元格式,利用一箇建立在非重疊型區域分裂技巧上的併行迭代法求解瞭最後的非線性代數方程組,證明瞭迭代法的收斂性併給齣瞭最優階的誤差估計.
침대비선성포물방정,급출료전리산적확장혼합원격식,이용일개건립재비중첩형구역분렬기교상적병행질대법구해료최후적비선성대수방정조,증명료질대법적수렴성병급출료최우계적오차고계.
Fully discrete mixed finite element method is considered to approximate the solution of a nonlinear second-order parabolic equations. A massively parallel iterative procedure based on domain decomposition technique is presented to solve resulting nonlinear algebraic equations. The convergence of the iteration for each time step is demonstrated. Optimal-order error estimates are also derived.