中国临床康复
中國臨床康複
중국림상강복
CHINESE JOURNAL OF CLINICAL REHABILITATION
2003年
12期
1790-1791
,共2页
王卫%王方路%王天星%刘国传%肖守中
王衛%王方路%王天星%劉國傳%肖守中
왕위%왕방로%왕천성%류국전%초수중
心率变异性%昼夜节律%运动试验%呼吸%心音图
心率變異性%晝夜節律%運動試驗%呼吸%心音圖
심솔변이성%주야절률%운동시험%호흡%심음도
heart rate variability%day-night rhythm%exercise%respiration%phonocardiogram
目的探索运动、昼夜节律和呼吸对心率变异性的影响. 方法 2000-01/2000-02从第三军医大学西南医院门诊收集 34名自愿受试者,于清晨 5 h和下午 5 h、运动前后分别记录心动周期信号,并测量和分析.用相继各心动周期的标准差( SDNN)作为心率变异性的一个指标.结果 10名受试者清晨 5 h和下午 5 h心率变异性指标 SDNN的均值分别为 30 ms和 29 ms,而清晨 5 h和下午 5 h两组心动周期数据汇成一组时的 SDNN增大至 262 ms;34名受试者运动前 SDNN的均值为 18 ms , 运动后的 SDNN的均值为 10 ms, 受试者运动前后心率变异性的差异非常显著( t=6.049, P< 0.01) ; 呼吸周期 I内的心动周期最大差值与呼吸周期 J内的心动周期最大差值之间的差异不显著( t= 0.024, P >0.05). 结论长时程( 24 h)心率变异性指标 SDNN的正常值( 141± 39 )ms的基础之一是心动周期的昼夜差;运动是影响心率变异性的重要因素;呼吸对心率变异性有一定的影响,但其大小次于心动周期的昼夜差对心率变异性的影响.
目的探索運動、晝夜節律和呼吸對心率變異性的影響. 方法 2000-01/2000-02從第三軍醫大學西南醫院門診收集 34名自願受試者,于清晨 5 h和下午 5 h、運動前後分彆記錄心動週期信號,併測量和分析.用相繼各心動週期的標準差( SDNN)作為心率變異性的一箇指標.結果 10名受試者清晨 5 h和下午 5 h心率變異性指標 SDNN的均值分彆為 30 ms和 29 ms,而清晨 5 h和下午 5 h兩組心動週期數據彙成一組時的 SDNN增大至 262 ms;34名受試者運動前 SDNN的均值為 18 ms , 運動後的 SDNN的均值為 10 ms, 受試者運動前後心率變異性的差異非常顯著( t=6.049, P< 0.01) ; 呼吸週期 I內的心動週期最大差值與呼吸週期 J內的心動週期最大差值之間的差異不顯著( t= 0.024, P >0.05). 結論長時程( 24 h)心率變異性指標 SDNN的正常值( 141± 39 )ms的基礎之一是心動週期的晝夜差;運動是影響心率變異性的重要因素;呼吸對心率變異性有一定的影響,但其大小次于心動週期的晝夜差對心率變異性的影響.
목적탐색운동、주야절률화호흡대심솔변이성적영향. 방법 2000-01/2000-02종제삼군의대학서남의원문진수집 34명자원수시자,우청신 5 h화하오 5 h、운동전후분별기록심동주기신호,병측량화분석.용상계각심동주기적표준차( SDNN)작위심솔변이성적일개지표.결과 10명수시자청신 5 h화하오 5 h심솔변이성지표 SDNN적균치분별위 30 ms화 29 ms,이청신 5 h화하오 5 h량조심동주기수거회성일조시적 SDNN증대지 262 ms;34명수시자운동전 SDNN적균치위 18 ms , 운동후적 SDNN적균치위 10 ms, 수시자운동전후심솔변이성적차이비상현저( t=6.049, P< 0.01) ; 호흡주기 I내적심동주기최대차치여호흡주기 J내적심동주기최대차치지간적차이불현저( t= 0.024, P >0.05). 결론장시정( 24 h)심솔변이성지표 SDNN적정상치( 141± 39 )ms적기출지일시심동주기적주야차;운동시영향심솔변이성적중요인소;호흡대심솔변이성유일정적영향,단기대소차우심동주기적주야차대심솔변이성적영향.
Aim To explore the influence of exercise , day-night rhythm, and respiration on heart rate variability (HRV).Methods Thirty four voluntary subjects from a community in Chongqing City in 2000, were included in this self-controlled study. HRV signals at 5 am and 5 pm, at rest and after exercise , were recorded, measured, and analyzed , respectively. The standard deviation of consecutive cardiac cycles( SDNN) was used as an indicator of HRV. Results The 10 subjects' mean SDNNs at 5 am and 5 pm were 30 ms and 29 ms, respectively, whereas when the two sets of cardiac cycle data at 5 am and 5 pm were merged as one dataset, the SDNN increased to 262 ms; for 34 subjects, mean SDNN before exercise was 18 ms, and mean SDNN after exercise was 10 ms, in comparison of SDNN before exercise with that after exercise, the difference was significant (t=6.049, P< 0.01); the difference between the mean value of the maximal cardiac cycle difference in respiratory cycle I and that in cycle J was not significant (t=0.024, P >0.05). Conclusion One of the bases of the normal value ( 141± 39)ms of SDNN from 24 hours HRV recording is day-night variations of cardiac cycle; SDNN after exercise is decreased, exercise is an important factor influencing HRV; respiration has a certain influence on HRV but this influence is less than that of day-night variations of cardiac cycle. The method used in this study can simultaneously collect and record cardiac contractility and cardiac cycle signals, which might be a tool for analyzing HRV.