纳米技术与精密工程
納米技術與精密工程
납미기술여정밀공정
NANOTECHNOLOGY AND PRECISION ENGINEERING
2009年
4期
342-345
,共4页
张福民%曲兴华%吴宏岩%叶声华
張福民%麯興華%吳宏巖%葉聲華
장복민%곡흥화%오굉암%협성화
大尺寸测量%平行弦%半径约束%圆拟合
大呎吋測量%平行絃%半徑約束%圓擬閤
대척촌측량%평행현%반경약속%원의합
large-scale measurement%parallel chord%radius constraint%fitting circle
由于难以均布采集坐标点,导致常规最小二乘法拟舍的精度低,不适于大型工件.实验结果表明半径和圆心拟合结果之间存在线性依赖关系.因此分别从提高圆心定位精度和半径测量精度两方面提高测量精度.用双目视觉传感器组成配对网络,利用平行弦方法提高圆心定位精度.基于设计半径已知条件,利用半径约束最小二乘法提高测量精度.对大型钢管工件和隧道构件等圆形截面对象进行仿真和实验.采用平行弦方法将圆心偏差由0.005mm降至0.003 mm,采用半径约束方法将圆心偏差由25.24 mm降至5.06 mm.结果表明,两种方法均可有效提高圆拟合精度,对噪声具有较好的鲁棒性.
由于難以均佈採集坐標點,導緻常規最小二乘法擬捨的精度低,不適于大型工件.實驗結果錶明半徑和圓心擬閤結果之間存在線性依賴關繫.因此分彆從提高圓心定位精度和半徑測量精度兩方麵提高測量精度.用雙目視覺傳感器組成配對網絡,利用平行絃方法提高圓心定位精度.基于設計半徑已知條件,利用半徑約束最小二乘法提高測量精度.對大型鋼管工件和隧道構件等圓形截麵對象進行倣真和實驗.採用平行絃方法將圓心偏差由0.005mm降至0.003 mm,採用半徑約束方法將圓心偏差由25.24 mm降至5.06 mm.結果錶明,兩種方法均可有效提高圓擬閤精度,對譟聲具有較好的魯棒性.
유우난이균포채집좌표점,도치상규최소이승법의사적정도저,불괄우대형공건.실험결과표명반경화원심의합결과지간존재선성의뢰관계.인차분별종제고원심정위정도화반경측량정도량방면제고측량정도.용쌍목시각전감기조성배대망락,이용평행현방법제고원심정위정도.기우설계반경이지조건,이용반경약속최소이승법제고측량정도.대대형강관공건화수도구건등원형절면대상진행방진화실험.채용평행현방법장원심편차유0.005mm강지0.003 mm,채용반경약속방법장원심편차유25.24 mm강지5.06 mm.결과표명,량충방법균가유효제고원의합정도,대조성구유교호적로봉성.
The data points are distributed asymmetrically, the ordinary least square method is unfit for large-scale work-pieces due to its low precision. According to the theoretical analysis and practical measurement , there is a linear relationship between the fitting results of the circle center and the radius. In this paper, a new method for improving measurement precision based on the above conclusion is presented. The matching network composed of binocular stereo vision sensor is introduced, and the orientation precision of the circle centre is advanced by parallel chord method. Besides, the radius precision is accomplished by least square method with radius constraint. Measurements of steel work-pieces and tunnel components are carried out by using simulation and experiment, and the center orientation error decreases from 0. 005 mm to 0.003 mm by means of parallel chord method, and from 25. 24 mm to 5.06 mm by use of least square method with radius constraint, which indicates that two proposed methods can improve measurement precision of circle effectively and have better robust to noise.