西北工业大学学报
西北工業大學學報
서북공업대학학보
JOURNAL OF NORTHWESTERN POLYTECHNICAL UNIVERSITY
2010年
1期
96-101
,共6页
控制%算法%负载串联谐振逆变器%频率跟踪%直流母线电流极性平均值
控製%算法%負載串聯諧振逆變器%頻率跟蹤%直流母線電流極性平均值
공제%산법%부재천련해진역변기%빈솔근종%직류모선전류겁성평균치
control%algorithms%series load resonant inverter%frequency tracking%mean value of DC bus current polarity
负载串联谐振逆变器,当负载参数变化时必须同步改变逆变器工作频率以适应负载变化来获得最大输出功率.通常采用锁相环技术完成谐振频率跟踪,需要同时测量逆变器输出电压和负载电流,电压、电流测量延迟时间的差异会造成频率跟踪误差.为了消除频率跟踪误差,文中提出了基于直流母线电流极性平均值的负载串联谐振式逆变器谐振频率跟踪方法.论文分析了逆变器直流母线电流极性信号平均值u与逆变器工作频率f及电路参数(L、C、R)关系,由于u反映了电路参数和逆变器工作频率变化,u最大值U对应于谐振频率,所以用U作为参考信号,u作为反馈信号,构成闭环谐振频率跟踪控制系统,通过比较u的变化情况,确定频率的增减,给出了频率跟踪流程,仿真和实验结果表明该方法能够很好地实现负载串联谐振逆变器的谐振频率跟踪.
負載串聯諧振逆變器,噹負載參數變化時必鬚同步改變逆變器工作頻率以適應負載變化來穫得最大輸齣功率.通常採用鎖相環技術完成諧振頻率跟蹤,需要同時測量逆變器輸齣電壓和負載電流,電壓、電流測量延遲時間的差異會造成頻率跟蹤誤差.為瞭消除頻率跟蹤誤差,文中提齣瞭基于直流母線電流極性平均值的負載串聯諧振式逆變器諧振頻率跟蹤方法.論文分析瞭逆變器直流母線電流極性信號平均值u與逆變器工作頻率f及電路參數(L、C、R)關繫,由于u反映瞭電路參數和逆變器工作頻率變化,u最大值U對應于諧振頻率,所以用U作為參攷信號,u作為反饋信號,構成閉環諧振頻率跟蹤控製繫統,通過比較u的變化情況,確定頻率的增減,給齣瞭頻率跟蹤流程,倣真和實驗結果錶明該方法能夠很好地實現負載串聯諧振逆變器的諧振頻率跟蹤.
부재천련해진역변기,당부재삼수변화시필수동보개변역변기공작빈솔이괄응부재변화래획득최대수출공솔.통상채용쇄상배기술완성해진빈솔근종,수요동시측량역변기수출전압화부재전류,전압、전류측량연지시간적차이회조성빈솔근종오차.위료소제빈솔근종오차,문중제출료기우직류모선전류겁성평균치적부재천련해진식역변기해진빈솔근종방법.논문분석료역변기직류모선전류겁성신호평균치u여역변기공작빈솔f급전로삼수(L、C、R)관계,유우u반영료전로삼수화역변기공작빈솔변화,u최대치U대응우해진빈솔,소이용U작위삼고신호,u작위반궤신호,구성폐배해진빈솔근종공제계통,통과비교u적변화정황,학정빈솔적증감,급출료빈솔근종류정,방진화실험결과표명해방법능구흔호지실현부재천련해진역변기적해진빈솔근종.
Section 1 of the full paper briefs the analysis of DC bus current of series load resonant inverter. Section 2 explains the minimization method in some detail; its core consists of: (1) we analyze the relationship among the mean value of DC bus current polarity, load parameters [resistance (R), inductance (L), capacity (C)], and the working frequency as shown in eq. (11) and Figs.4 and 5; (2) as the mean value reflects the changes in R, L, C and the working frequency and as the maximum value corresponds to the resonant frequency, we determine how to increase or decrease the working frequency of the resonant inverter; (3) using the maximum value as reference signal and the mean value as feedback signal, we build the closed loop resonant frequency tracking control system, whose block diagram is given in Fig.6. Section 3 simulates the resonant frequency tracking, with the simulation results given in Fig.9. Section 4 does experiments on the resonant frequency tracking control system, with the experimental results given in Fig.10. Both the simulation results and the experimental results, which agree well with each other, show preliminarily that the resonant frequency tracking control system can fulfill its purpose.