高电压技术
高電壓技術
고전압기술
HIGH VOLTAGE ENGINEERING
2011年
10期
2517-2522
,共6页
李善评%崔江杰%姜艳艳%方洪琛
李善評%崔江傑%薑豔豔%方洪琛
리선평%최강걸%강염염%방홍침
介质阻挡放电%低温等离子体%烯啶虫胺%农药%降解%废水处理
介質阻擋放電%低溫等離子體%烯啶蟲胺%農藥%降解%廢水處理
개질조당방전%저온등리자체%희정충알%농약%강해%폐수처리
dielectric barrier discharge%low-temperature plasma%nitenpyram%pesticide%degradation%wastewater treatment
为了研究温等离子体在处理烯啶虫胺农药废水方面的效果,采用中心进水、周边出水的辐流式沉淀池结构的反应器,通过介质阻挡放电产生低温等离子体处理烯啶虫胺溶液,研究了不同介质阻挡放电功率及外界因素如Fe2+、正丁醇、无机盐Na2CO3和H2O2等对等离子体降解烯啶虫胺的影响。实验结果表明,低温等离子体对烯啶虫胺有着较好的处理效果。提高放电功率能够有效地提高烯啶虫胺的降解率,放电功率为200W,降解处理180min,初始质量浓度为100mg/L的烯啶虫胺溶液中,烯啶虫胺的降解率达到82.7%;低质量浓度Fe2+、H2O2的添加可促进烯啶虫胺农药的降解,但是当添加物的质量浓度过高时会在一定程度上抑制降解;添加正丁醇和无机盐Na2CO3作为自由基俘获剂和缓冲剂则抑制了烯啶虫胺农药的降解;此外,烯啶虫胺溶液pH值随着降解过程进行逐渐降低。
為瞭研究溫等離子體在處理烯啶蟲胺農藥廢水方麵的效果,採用中心進水、週邊齣水的輻流式沉澱池結構的反應器,通過介質阻擋放電產生低溫等離子體處理烯啶蟲胺溶液,研究瞭不同介質阻擋放電功率及外界因素如Fe2+、正丁醇、無機鹽Na2CO3和H2O2等對等離子體降解烯啶蟲胺的影響。實驗結果錶明,低溫等離子體對烯啶蟲胺有著較好的處理效果。提高放電功率能夠有效地提高烯啶蟲胺的降解率,放電功率為200W,降解處理180min,初始質量濃度為100mg/L的烯啶蟲胺溶液中,烯啶蟲胺的降解率達到82.7%;低質量濃度Fe2+、H2O2的添加可促進烯啶蟲胺農藥的降解,但是噹添加物的質量濃度過高時會在一定程度上抑製降解;添加正丁醇和無機鹽Na2CO3作為自由基俘穫劑和緩遲劑則抑製瞭烯啶蟲胺農藥的降解;此外,烯啶蟲胺溶液pH值隨著降解過程進行逐漸降低。
위료연구온등리자체재처리희정충알농약폐수방면적효과,채용중심진수、주변출수적복류식침정지결구적반응기,통과개질조당방전산생저온등리자체처리희정충알용액,연구료불동개질조당방전공솔급외계인소여Fe2+、정정순、무궤염Na2CO3화H2O2등대등리자체강해희정충알적영향。실험결과표명,저온등리자체대희정충알유착교호적처리효과。제고방전공솔능구유효지제고희정충알적강해솔,방전공솔위200W,강해처리180min,초시질량농도위100mg/L적희정충알용액중,희정충알적강해솔체도82.7%;저질량농도Fe2+、H2O2적첨가가촉진희정충알농약적강해,단시당첨가물적질량농도과고시회재일정정도상억제강해;첨가정정순화무궤염Na2CO3작위자유기부획제화완충제칙억제료희정충알농약적강해;차외,희정충알용액pH치수착강해과정진행축점강저。
In order to study the effect of low-temperature plasma on Nitenpyram ( NTP) pesticide containing wastewater treatment, employing reactor with a structure of radial flow sedimentation tank and centered fluid inlet, NTP solution was experimentally treated by low-temperature plasma produced by dielectric barrier discharge process. The influences of different dielectric barrier discharge's input power and different external factors, such as Fe2+ , butanol, Na2CO3 and H2O2 on nitenpyram degradation, on treatment results were studied. The results show that NTP could be effectively removed from aqueous solution by the low-temperature plasma. Increasing the input power can increase the degradation efficiency. 82.7 % of the NTP in 1L NTP solution (initially 100 mg/L) was degraded after 180 min treatment when the input power was 200 W. Low concentrations of Fe2+ and H2 O2 could enhance the degradation, however, they hinder the degradation at higher concentrations. The presence of n-butanol as hydroxide radical scavenger and sodium carbonate as buffer in the aqueous solution decreases the removal efficiency of NTP to some extent. Furthermore, the pH of NTP drops with the degradation processing.