运筹学学报
運籌學學報
운주학학보
OR TRANSACTIONS
2007年
4期
5-14
,共10页
运筹学%半定规划%非线性Lagrange算法%内点法
運籌學%半定規劃%非線性Lagrange算法%內點法
운주학%반정규화%비선성Lagrange산법%내점법
Operation research%semidefinite programming%nonlinear Lagrange algorithm%interior-point method
本文提出了一个求解非凸半定规划的非线性Lagrange算法,当二阶充分条件以及严格互补条件成立时,证明了这一算法的收敛性定理.收敛结果表明,当惩罚参数小于某个阀值时,算法是局部收敛的;此外,还给出了解的一个依赖于惩罚参数的误差界.
本文提齣瞭一箇求解非凸半定規劃的非線性Lagrange算法,噹二階充分條件以及嚴格互補條件成立時,證明瞭這一算法的收斂性定理.收斂結果錶明,噹懲罰參數小于某箇閥值時,算法是跼部收斂的;此外,還給齣瞭解的一箇依賴于懲罰參數的誤差界.
본문제출료일개구해비철반정규화적비선성Lagrange산법,당이계충분조건이급엄격호보조건성립시,증명료저일산법적수렴성정리.수렴결과표명,당징벌삼수소우모개벌치시,산법시국부수렴적;차외,환급출료해적일개의뢰우징벌삼수적오차계.
This paper proposes a nonlinear Lagrange algorithm for solving nonconvex semidefinite programming.Under the second order sufficient condition and the strict complementarity condition,the convergence theorem is established.The convergence theorem shows that the nonlinear Lagrange algorithm is locally convergent when the penalty parameter is smaller than a threshold.The error bound of solution,depending on the penalty parameter,is also given.