上海师范大学学报(自然科学版)
上海師範大學學報(自然科學版)
상해사범대학학보(자연과학판)
JOURNAL OF SHANGHAI TEACHERS UNIVERSITY(NATURAL SCIENCES)
2010年
1期
7-12
,共6页
Banach空间中的非线性方程组%拟牛顿法%半局部收敛定理%递推关系式
Banach空間中的非線性方程組%擬牛頓法%半跼部收斂定理%遞推關繫式
Banach공간중적비선성방정조%의우돈법%반국부수렴정리%체추관계식
nonlinear equation in Banach space%quasi-Newton method%semilocal convergence theorem%recurrence relation
分析了Frechet可微算子是p-阶H(o)lder连续的拟牛顿法收敛性,证明了非线性方程组解的存在性和唯一性,而且考虑了拟牛顿迭代至少1+p阶R收敛率.
分析瞭Frechet可微算子是p-階H(o)lder連續的擬牛頓法收斂性,證明瞭非線性方程組解的存在性和唯一性,而且攷慮瞭擬牛頓迭代至少1+p階R收斂率.
분석료Frechet가미산자시p-계H(o)lder련속적의우돈법수렴성,증명료비선성방정조해적존재성화유일성,이차고필료의우돈질대지소1+p계R수렴솔.
We analyze the convergence of the quasi-Newton method when the first Frechet derivative of operator involved is p-order H(o)lder continuous. Based on establishing some results on the existence and uniqueness of the solution for a nonlinear equation system, we calculate also the quasi-Newton method that is R-order of convergence at least 1+p.