黑龙江大学自然科学学报
黑龍江大學自然科學學報
흑룡강대학자연과학학보
JOURNAL OF NATURAL SCIENCE OF HEILONGJIANG UNIVERSITY
2008年
6期
850-854
,共5页
时滞积分微分方程%稳定性%线性多步法
時滯積分微分方程%穩定性%線性多步法
시체적분미분방정%은정성%선성다보법
delay integral differential equations%stability%linear multistep methods
主要研究线性中立型Volterra时滞积分微分方程的数值稳定性.在此类延迟微分系统渐进稳定的充分条件下,证明了所有的A-稳定的线性多步方法都将保持此方程的精确解的不依赖于延迟项的稳定性.数值试验验证了主要结论.
主要研究線性中立型Volterra時滯積分微分方程的數值穩定性.在此類延遲微分繫統漸進穩定的充分條件下,證明瞭所有的A-穩定的線性多步方法都將保持此方程的精確解的不依賴于延遲項的穩定性.數值試驗驗證瞭主要結論.
주요연구선성중립형Volterra시체적분미분방정적수치은정성.재차류연지미분계통점진은정적충분조건하,증명료소유적A-은정적선성다보방법도장보지차방정적정학해적불의뢰우연지항적은정성.수치시험험증료주요결론.
The numerical stability of linear neutral Volterra delay integral differential equations is dealt with. Under a sufficient condition such that this system with a lagging argument is asymptotically stable, it is proved that every A - stable linear multistep method preserves the delay - independent stabil-ity of its exact solutions. Finally, some numerical experiments are given to demonstrate the main conclu-sion.