中国临床康复
中國臨床康複
중국림상강복
CHINESE JOURNAL OF CLINICAL REHABILITATION
2006年
1期
168-171
,共4页
生物降解%纤维素%应力,物理%分子量
生物降解%纖維素%應力,物理%分子量
생물강해%섬유소%응력,물리%분자량
背景:再生丝素纤维溶解过程中丝素蛋白的分子量不可避免地会产生一定的降解,致使再生丝素纤维至今未进入实用阶段.目的:获得生物可降解的再生丝素纤维.设计:单一样本实验.单位:苏州大学材料工程学院丝绸工程江苏省重点实验室.材料:下脚蚕丝由苏州丝绸进出口公司提供.方法:2003-01/2004-12在苏州大学材料工程学院丝绸工程江苏省重点实验室完成.通过控制废弃天然丝素纤维在中性盐溶解时分子量的变化、湿法纺丝工艺条件和牵伸倍率方法纺制具有一定力学性能和生物可降解的再生丝素纤维.具体步骤: ①制备丝素. ②制备纺丝液. ③再生丝素纤维湿法纺丝. ④采用十二烷基硫酸钠-聚丙稀酰胺凝胶电泳法测定溴化锂溶解后丝素溶液的分子量. ⑤测定丝素纤维的结晶度和取向度. ⑥测定再生丝素纤维的力学性能. ⑦测定丝素纤维的体外酶降解率.主要观察指标: ①经溴化锂溶解的丝素蛋白的相对分子质量. ②X射线衍射结果. ③再生丝素纤维的体外酶降解率.结果: ①经溴化锂溶解后,丝素蛋白纺丝液的分子量主要分布在10万以下. ②在再生丝素纤维湿法纺丝的凝固、牵伸过程中,丝素的构象从无规卷曲转变为分子链中β-折叠和无规卷曲/α-螺旋构象共存. ③用放线菌酶对六氟异丙醇法纺制的再生丝素纤维的体外酶降解实验表明,再生丝素纤维其30 d的降解率为37.16%,天然丝素纤维的30 d的降解率为10.70%.结论:通过控制再生丝素纺丝液分子量、湿法纺丝工艺条件和牵伸倍率方法,可纺制具有一定力学性能和生物可降解的再生丝素纤维.
揹景:再生絲素纖維溶解過程中絲素蛋白的分子量不可避免地會產生一定的降解,緻使再生絲素纖維至今未進入實用階段.目的:穫得生物可降解的再生絲素纖維.設計:單一樣本實驗.單位:囌州大學材料工程學院絲綢工程江囌省重點實驗室.材料:下腳蠶絲由囌州絲綢進齣口公司提供.方法:2003-01/2004-12在囌州大學材料工程學院絲綢工程江囌省重點實驗室完成.通過控製廢棄天然絲素纖維在中性鹽溶解時分子量的變化、濕法紡絲工藝條件和牽伸倍率方法紡製具有一定力學性能和生物可降解的再生絲素纖維.具體步驟: ①製備絲素. ②製備紡絲液. ③再生絲素纖維濕法紡絲. ④採用十二烷基硫痠鈉-聚丙稀酰胺凝膠電泳法測定溴化鋰溶解後絲素溶液的分子量. ⑤測定絲素纖維的結晶度和取嚮度. ⑥測定再生絲素纖維的力學性能. ⑦測定絲素纖維的體外酶降解率.主要觀察指標: ①經溴化鋰溶解的絲素蛋白的相對分子質量. ②X射線衍射結果. ③再生絲素纖維的體外酶降解率.結果: ①經溴化鋰溶解後,絲素蛋白紡絲液的分子量主要分佈在10萬以下. ②在再生絲素纖維濕法紡絲的凝固、牽伸過程中,絲素的構象從無規捲麯轉變為分子鏈中β-摺疊和無規捲麯/α-螺鏇構象共存. ③用放線菌酶對六氟異丙醇法紡製的再生絲素纖維的體外酶降解實驗錶明,再生絲素纖維其30 d的降解率為37.16%,天然絲素纖維的30 d的降解率為10.70%.結論:通過控製再生絲素紡絲液分子量、濕法紡絲工藝條件和牽伸倍率方法,可紡製具有一定力學性能和生物可降解的再生絲素纖維.
배경:재생사소섬유용해과정중사소단백적분자량불가피면지회산생일정적강해,치사재생사소섬유지금미진입실용계단.목적:획득생물가강해적재생사소섬유.설계:단일양본실험.단위:소주대학재료공정학원사주공정강소성중점실험실.재료:하각잠사유소주사주진출구공사제공.방법:2003-01/2004-12재소주대학재료공정학원사주공정강소성중점실험실완성.통과공제폐기천연사소섬유재중성염용해시분자량적변화、습법방사공예조건화견신배솔방법방제구유일정역학성능화생물가강해적재생사소섬유.구체보취: ①제비사소. ②제비방사액. ③재생사소섬유습법방사. ④채용십이완기류산납-취병희선알응효전영법측정추화리용해후사소용액적분자량. ⑤측정사소섬유적결정도화취향도. ⑥측정재생사소섬유적역학성능. ⑦측정사소섬유적체외매강해솔.주요관찰지표: ①경추화리용해적사소단백적상대분자질량. ②X사선연사결과. ③재생사소섬유적체외매강해솔.결과: ①경추화리용해후,사소단백방사액적분자량주요분포재10만이하. ②재재생사소섬유습법방사적응고、견신과정중,사소적구상종무규권곡전변위분자련중β-절첩화무규권곡/α-라선구상공존. ③용방선균매대륙불이병순법방제적재생사소섬유적체외매강해실험표명,재생사소섬유기30 d적강해솔위37.16%,천연사소섬유적30 d적강해솔위10.70%.결론:통과공제재생사소방사액분자량、습법방사공예조건화견신배솔방법,가방제구유일정역학성능화생물가강해적재생사소섬유.
BACKGROUND: The molecular weight of fibroin is inevitably reduced in the course of the dissolution of regenerated fibroin fiber, and this is why we have not entered the stage of the practical application of the regenerated fibroin fiber till now.OBJECTIVE: To obtain biodegradable regenerated fibroin fiber.DESIGN: A single sample experiment.SETTING: Jiangsu Provincial Key Laboratory of Silk Project of Material Engineering College of Soochow University.MATERIALS: Leftover silk pieces were provided by Suzhou Silk Import & Export Corp.METHODS: This study was performed at Jiangsu Provincial Key Laboratory of Silk Project of Material Engineering College of Suzhou University between January 2003 and December 2004. By controlling the molecular of abandoned natural fibroin fiber during neutral salt dissolution process, wet spinning technique and draft method were applied to spin regenerated fibroin fibers that have certain mechanical and biodegradable properties.The specific procedure is as follows: ①fibroin preparations. ② Spinning solution preparations. ③ Regenerated fibroin fibers were spun with wet spinning method. ④Sodium lauryl sulphate-polyacrylamide gel electrophoresis method was used to detect the molecular weight of LiBr dissolved fibroin solution. ⑤To detect the crystallinity and orientation of fibroin fibers. ⑥ To detect the mechanic properties of regenerated fibroin fibers. ⑦ To detect the in vitro enzyme degradation rate of fibroin fibers.MAIN OUTCOME MEASURES: ①The relative molecular weight of LiBr dissolved silk fibroin. ② Result of X-Ray diffraction. ③The in vitro enzyme degradation rate of regenerated fibroin fibers.RESULTS: ①After LiBr dissolution, the molecular weight of fibroin spinning solution was mainly below 100 000. ②During the coagulation and pulling process of regenerated fibroin fiber wet spinning, fibroin fiber conformation changed from random convolution to the co-existence of β-folding and random coi1/α-spiral conformation in molecular chain. ③ Actinozyme was used to assess the in vitro enzyme degradation rate of hexafluoroisopropanol spun regenerated silk fibroin, and the 30 day-degradation rate of regenerated fibroin fibers was 37.16%, compared with 10.70% of natural fibroin fiber.CONCLUSION: Wet spinning technique and draft method can be used to spin regenerated fibroin fibers possessing certain mechanical and biodegradable properties by controlling the molecular weight of abandoned natural fibroin fibers during neutral salt dissolution process.