稀有金属材料与工程
稀有金屬材料與工程
희유금속재료여공정
RARE METAL MATERIALS AND ENGINEERNG
2002年
2期
92-95
,共4页
张亮%杜海平%石银明%史习智
張亮%杜海平%石銀明%史習智
장량%두해평%석은명%사습지
GHM模型%有限元%粘弹性材料
GHM模型%有限元%粘彈性材料
GHM모형%유한원%점탄성재료
GHM model%finite element method%viscoelastic material
将ZN-1粘弹性材料的GHM模型与工程上常用的有限元方法相结合,引入耗散自由度,将由于ZN-1型粘弹性材料导致的非线性微分方程转化为一般的二阶定常线性系统模型;并将GHM模型与最常用的标准线性模型、分数导数模型进行比较,结果表明本研究提出的确定GHM模型参数的方法是正确的.
將ZN-1粘彈性材料的GHM模型與工程上常用的有限元方法相結閤,引入耗散自由度,將由于ZN-1型粘彈性材料導緻的非線性微分方程轉化為一般的二階定常線性繫統模型;併將GHM模型與最常用的標準線性模型、分數導數模型進行比較,結果錶明本研究提齣的確定GHM模型參數的方法是正確的.
장ZN-1점탄성재료적GHM모형여공정상상용적유한원방법상결합,인입모산자유도,장유우ZN-1형점탄성재료도치적비선성미분방정전화위일반적이계정상선성계통모형;병장GHM모형여최상용적표준선성모형、분수도수모형진행비교,결과표명본연구제출적학정GHM모형삼수적방법시정학적.
The GHM(Golla-Hughes -McTavish) model of ZN-1 Viscoelastic Material is combined with finite element method (FEM), which is the most frequently used method in Engineering. It can approach time-consuming iteration in solving model parameters and responses by introducing dissipation coordinates . The parameters of GHM model are determined by nonlinear curve fitting in complex frequency domain. This is converted into nonlinear optimization problem with constrained condition. The results show that the method proposed in the present paper to determine the parameters of GHM model is correct, simple and effective to employ GHM model to perform dynamic analysis.