吉林大学学报(地球科学版)
吉林大學學報(地毬科學版)
길림대학학보(지구과학판)
JOURNAL OF JILIN UNIVERSITY(EARTH SCIENCE EDITION)
2009年
6期
1156-1162
,共7页
黄颖%周云轩%吴稳%况润元%李行
黃穎%週雲軒%吳穩%況潤元%李行
황영%주운헌%오은%황윤원%리행
决策树%城市湿地%遥感%纹理分析%K-T变换%HIS变换
決策樹%城市濕地%遙感%紋理分析%K-T變換%HIS變換
결책수%성시습지%요감%문리분석%K-T변환%HIS변환
decision tree model%urban wetland%remote sensing%texture analysis%K-T transformation%IHS transformation
城市湿地是上海重要的生态基础并具有复杂多变的自然特性.研究采用决策树分类方法,以TM影像多光谱波段特征为主要分类变量,采用经K-T变换、HIS变换等光谱增强后的数据以及利用灰度共生矩阵分析影像第一主成分的纹理统计量作为辅助分类变量,结合城市湿地几何特征信息,构建上海城市湿地决策树分类模型,进行上海市湿地信息的遥感提取和分类.结果表明:(1)上海城市湿地总面积为1 277.40 km~2;其中水田面积最大,占总面积的65.30%;其次为河流、库塘、湖泊和芦苇.(2)决策树模型的分类方法在一定程度上提高了城市湿地提取和分类的精度,使其达到89.05%;与传统的最大似然法相比,总精度提高了约10%.
城市濕地是上海重要的生態基礎併具有複雜多變的自然特性.研究採用決策樹分類方法,以TM影像多光譜波段特徵為主要分類變量,採用經K-T變換、HIS變換等光譜增彊後的數據以及利用灰度共生矩陣分析影像第一主成分的紋理統計量作為輔助分類變量,結閤城市濕地幾何特徵信息,構建上海城市濕地決策樹分類模型,進行上海市濕地信息的遙感提取和分類.結果錶明:(1)上海城市濕地總麵積為1 277.40 km~2;其中水田麵積最大,佔總麵積的65.30%;其次為河流、庫塘、湖泊和蘆葦.(2)決策樹模型的分類方法在一定程度上提高瞭城市濕地提取和分類的精度,使其達到89.05%;與傳統的最大似然法相比,總精度提高瞭約10%.
성시습지시상해중요적생태기출병구유복잡다변적자연특성.연구채용결책수분류방법,이TM영상다광보파단특정위주요분류변량,채용경K-T변환、HIS변환등광보증강후적수거이급이용회도공생구진분석영상제일주성분적문리통계량작위보조분류변량,결합성시습지궤하특정신식,구건상해성시습지결책수분류모형,진행상해시습지신식적요감제취화분류.결과표명:(1)상해성시습지총면적위1 277.40 km~2;기중수전면적최대,점총면적적65.30%;기차위하류、고당、호박화호위.(2)결책수모형적분류방법재일정정도상제고료성시습지제취화분류적정도,사기체도89.05%;여전통적최대사연법상비,총정도제고료약10%.
Urban wetland is an important ecological basis of Shanghai and it is characterized with complex properties. In this study, a decision tree based classification method is used to extract and classify the urban wetland information in Shanghai area. The method uses multispectral bands of Landsat-5 TM image as the main variables, and a series of derivative data as the auxiliary inputs, derived from the Landsat-5 TM images by using respectively K-T transformation, HIS transformation, principal component analysis and textural analysis. With these variables in association with the spatial characteristics of the urban wetland in Shanghai, the method builds a decision tree model for urban wetland extraction and classification. The application of the model shows that the total area of the urban wetland in Shanghai is about 1 277.40 km~2. The rice cultivated area occupies the highest portion up to 65.30% of the total wetland, and the next the area of rivers, ponds, lakes and reed fields. The decision tree model based method has a relative high precision in the urban wetland extraction and classification. The classification result indicates that the overall accuracy reaches 89.05%, more than 10% increase when compared with the maximum likelihood algorithm.