安全与环境学报
安全與環境學報
안전여배경학보
JOURNAL OF SAFETY AND ENVIRONMENT
2009年
6期
32-35
,共4页
周雪花%申翔伟%李刚%荆艳艳%张全国
週雪花%申翔偉%李剛%荊豔豔%張全國
주설화%신상위%리강%형염염%장전국
环境工程学%光合细菌%连续制氢%能量平衡%节能降耗
環境工程學%光閤細菌%連續製氫%能量平衡%節能降耗
배경공정학%광합세균%련속제경%능량평형%절능강모
environmental engineering%photosynthetic bacteria%continuous hydrogen production%energy balance%energy- saving
介绍太阳能光合生物连续制氢系统的组成结构和基本工作原理,依据能量守恒定律提出光合生物连续制氢系统的能量平衡模型及其分析方法,指出该系统的能量有效利用率小于17.5%,进一步从太阳能辐射的光谱耦合技术、高表面积比的光合生物反应器结构、迅速搅拌技术、均匀分散光照技术、光合细菌和藻类生物混合培养技术和微生物浓度优化等方面探索了提高光合生物连续制氢系统能量利用率和节能减耗途径,为推进光合生物制氢技术应用的工业化进程提供科学参考.
介紹太暘能光閤生物連續製氫繫統的組成結構和基本工作原理,依據能量守恆定律提齣光閤生物連續製氫繫統的能量平衡模型及其分析方法,指齣該繫統的能量有效利用率小于17.5%,進一步從太暘能輻射的光譜耦閤技術、高錶麵積比的光閤生物反應器結構、迅速攪拌技術、均勻分散光照技術、光閤細菌和藻類生物混閤培養技術和微生物濃度優化等方麵探索瞭提高光閤生物連續製氫繫統能量利用率和節能減耗途徑,為推進光閤生物製氫技術應用的工業化進程提供科學參攷.
개소태양능광합생물련속제경계통적조성결구화기본공작원리,의거능량수항정률제출광합생물련속제경계통적능량평형모형급기분석방법,지출해계통적능량유효이용솔소우17.5%,진일보종태양능복사적광보우합기술、고표면적비적광합생물반응기결구、신속교반기술、균균분산광조기술、광합세균화조류생물혼합배양기술화미생물농도우화등방면탐색료제고광합생물련속제경계통능량이용솔화절능감모도경,위추진광합생물제경기술응용적공업화진정제공과학삼고.
This paper is mainly to introduce a new system for continuous hydrogen production which can help to integrate the concentration and transfer of solar power and the biological hydrogen production. By taking the system as the research object, we have established the energy balance model for the continuous hydrogen production of the solar power. In this experimental system, the total input of energy is equal to 19.12× 10~5 kJ·d~(-1), including the optical energy,thermal energy, electricity and chemical energy, with its energy output being 3.34 ×10~5 kJ · d~(-1), including the energy brought out by hydrogen and other gases. The result of our study shows that the effective utilization rate of energy turns to be less than 17.5%, whose calculation was done based on the black box principle and the total energy conversation with the improvement of conversion efficiency of light energy made. The hydrogen production and energy output have been raised with the effective utilization of the energy system as a result of detailed study of the situation of energy consumption. Through the improvement of the experimental system, it can be" said that we have found a feasible way to improve the effective ufilization of solar energy with technologies such as coupling absorption spectrum of photosynthetic bacteria with solar spectrum, the improvement of the light sources in the internal space of the reactor, plus the specific surface area of reactor, co-cultivating photesynthetie bacteria with algae, as well as the optimization of the concentration of microbes.