河南大学学报(自然科学版)
河南大學學報(自然科學版)
하남대학학보(자연과학판)
JOURNAL OF HENAN UNIVERSITY(NATURAL SCIENCE)
2009年
6期
558-562
,共5页
传染病的常微模型%整体解存在唯一性%平衡解的稳定性和渐近稳定性
傳染病的常微模型%整體解存在唯一性%平衡解的穩定性和漸近穩定性
전염병적상미모형%정체해존재유일성%평형해적은정성화점근은정성
infectious disease ODE model%stability and asymptotic stability of non-negative equilibrium solutions%existence and uniqueness of global solution
研究了传染病常微模型三次系统解的非负性、整体解的存在唯一性,并利用Liapunov函数法和霍维茨准则等研究了非负平衡解的稳定性及渐近稳定性.
研究瞭傳染病常微模型三次繫統解的非負性、整體解的存在唯一性,併利用Liapunov函數法和霍維茨準則等研究瞭非負平衡解的穩定性及漸近穩定性.
연구료전염병상미모형삼차계통해적비부성、정체해적존재유일성,병이용Liapunov함수법화곽유자준칙등연구료비부평형해적은정성급점근은정성.
This paper mainly discussed the non-negativity and the global existence of solution to infectious disease model. Moreover, it applied Liapunov function and the Routh-Hurwitz criterion to the study of the stability and asymptotic stability of the non-negative equilibrium solutions to the ODE systems. The conclusions can guide research in the prediction and control of infectious disease.