光散射学报
光散射學報
광산사학보
CHINESE JOURNAL OF LIGHT SCATTERING
2004年
2期
177-183
,共7页
孙伟民%相艳荣%张杨%刘强%赵磊%李颖娟
孫偉民%相豔榮%張楊%劉彊%趙磊%李穎娟
손위민%상염영%장양%류강%조뢰%리영연
光纤%荧光%火警%参考法%修正法
光纖%熒光%火警%參攷法%脩正法
광섬%형광%화경%삼고법%수정법
Fiber%fluorescence%fire alarm%referential method%correction method
光纤火警报警系统是用于保护重要仪器设备的一种有效的手段,是为了探测在变化的背景温度下(从室温到500-600℃),局部温度出现至少50-100℃的温度升高(对应出现火险的情形).传感器保护的范围约1-3米,空间分辨率至少30cm.系统采用荧光寿命作为传感参量,有两种情形可以改变测得的荧度整体发生变化,在实际应用时环境背景温度可能有几百度的温度波动.本文采用了两种方式来区分以上两种情况:一种是采用一小段高掺杂荧光光纤作为点式参考光纤,称为参考法:一种是对测得的荧光衰?ゥ减信号进行修正,称为修正法.分别给出了两种方法的实验系统及测试结果.
光纖火警報警繫統是用于保護重要儀器設備的一種有效的手段,是為瞭探測在變化的揹景溫度下(從室溫到500-600℃),跼部溫度齣現至少50-100℃的溫度升高(對應齣現火險的情形).傳感器保護的範圍約1-3米,空間分辨率至少30cm.繫統採用熒光壽命作為傳感參量,有兩種情形可以改變測得的熒度整體髮生變化,在實際應用時環境揹景溫度可能有幾百度的溫度波動.本文採用瞭兩種方式來區分以上兩種情況:一種是採用一小段高摻雜熒光光纖作為點式參攷光纖,稱為參攷法:一種是對測得的熒光衰?ゥ減信號進行脩正,稱為脩正法.分彆給齣瞭兩種方法的實驗繫統及測試結果.
광섬화경보경계통시용우보호중요의기설비적일충유효적수단,시위료탐측재변화적배경온도하(종실온도500-600℃),국부온도출현지소50-100℃적온도승고(대응출현화험적정형).전감기보호적범위약1-3미,공간분변솔지소30cm.계통채용형광수명작위전감삼량,유량충정형가이개변측득적형도정체발생변화,재실제응용시배경배경온도가능유궤백도적온도파동.본문채용료량충방식래구분이상량충정황:일충시채용일소단고참잡형광광섬작위점식삼고광섬,칭위삼고법:일충시대측득적형광쇠?ゥ감신호진행수정,칭위수정법.분별급출료량충방법적실험계통급측시결과.
Effective detection of potential fire hazards is important in industry, and especially in aerospace applications. Optical fiber methods may offer alternatives to well- established conventional devices and a fluorescence - based fire alarm system has been developed specially to address this requirement. The aim has been to investigate and develop a simple yet effective scheme to determine the presence of a localized temperature excursion (as low as 50 - 100℃) against a varying background in a system that can operate effectively at temperatures up to 500- 600℃. The requirement for the device is for a sensing length in the range of 1 m to 3 m with a spatial resolution shorter than 30 cm.The optical fiber sensing system used in this work employs a scheme based on monitoring the exponential decay of the fluorescence from a doped fiber and thus to address two different the fiber length. * The change or drift of the background temperature. It may vary from room temperature to potentially several hundred degrees, under normal operation in some applications.Two different methods have been discussed in this paper to address the hot - spot linked parameters - these being termed the referential method and the correction method. The referential method requires a referential channel to assist the sensing system to identify a hotspot signal, irrespective of any change of the background that may occur. However, the correction method offers the absolute temperatures of both hotspot and average background without an additional referential channel, offering a simpler approach. Results obtained on the development and use of both systems will be presented.