中国有色金属学报(英文版)
中國有色金屬學報(英文版)
중국유색금속학보(영문판)
TRANSACTIONS OF NONFERROUS METALS SOCIETY OF CHINA
2011年
1期
109-113
,共5页
苏桦%张怀武%唐晓莉%荆玉兰
囌樺%張懷武%唐曉莉%荊玉蘭
소화%장부무%당효리%형옥란
Ni-Zn铁氧体%MnO2%掺杂%磁性能
Ni-Zn鐵氧體%MnO2%摻雜%磁性能
Ni-Zn철양체%MnO2%참잡%자성능
Ni-Zn ferrite%MnO2%doping%magnetic properties
为了改善Ni-Zn铁氧体材料的功率损耗特性,基于固相反应烧结法研究MnO2掺杂对Ni-Zn铁氧体综合性能的影响.研究发现,在0~2.0%(质量分数)掺杂范围内,MnO2不会影响铁氧体的单相结构.而Ni-Zn铁氧体的平均晶粒尺寸、烧结密度以及磁导率都随着MnO2掺杂量的增加而逐渐下降,同时,铁氧体的电阻率持续上升.饱和磁化强度(单位质量产生的磁矩)先随着0.4% MnO2的掺入略有上升,而后随着MnO2掺杂量的增加持续下降,这主要是受金属离子占位及超交换作用力变化的影响.当测试频率低于1 MHz时,铁氧体的功耗(Pcv)随着MnO2掺杂量的增加持续上升,而当测试频率超过1 MHz后,涡流损耗在总损耗中逐渐占主导地位,电阻率越高的样品越有利于获得低功耗,但这一规律对于2.0% MnO2掺杂的样品不适用.总体而言,当频率低于1 MHz时,不掺杂MnO2的Ni-Zn铁氧样品能够获得更低的功耗;而当频率超过1 MHz后,掺杂1.6% MnO2的Ni-Zn铁氧体能够获得最低的功耗.
為瞭改善Ni-Zn鐵氧體材料的功率損耗特性,基于固相反應燒結法研究MnO2摻雜對Ni-Zn鐵氧體綜閤性能的影響.研究髮現,在0~2.0%(質量分數)摻雜範圍內,MnO2不會影響鐵氧體的單相結構.而Ni-Zn鐵氧體的平均晶粒呎吋、燒結密度以及磁導率都隨著MnO2摻雜量的增加而逐漸下降,同時,鐵氧體的電阻率持續上升.飽和磁化彊度(單位質量產生的磁矩)先隨著0.4% MnO2的摻入略有上升,而後隨著MnO2摻雜量的增加持續下降,這主要是受金屬離子佔位及超交換作用力變化的影響.噹測試頻率低于1 MHz時,鐵氧體的功耗(Pcv)隨著MnO2摻雜量的增加持續上升,而噹測試頻率超過1 MHz後,渦流損耗在總損耗中逐漸佔主導地位,電阻率越高的樣品越有利于穫得低功耗,但這一規律對于2.0% MnO2摻雜的樣品不適用.總體而言,噹頻率低于1 MHz時,不摻雜MnO2的Ni-Zn鐵氧樣品能夠穫得更低的功耗;而噹頻率超過1 MHz後,摻雜1.6% MnO2的Ni-Zn鐵氧體能夠穫得最低的功耗.
위료개선Ni-Zn철양체재료적공솔손모특성,기우고상반응소결법연구MnO2참잡대Ni-Zn철양체종합성능적영향.연구발현,재0~2.0%(질량분수)참잡범위내,MnO2불회영향철양체적단상결구.이Ni-Zn철양체적평균정립척촌、소결밀도이급자도솔도수착MnO2참잡량적증가이축점하강,동시,철양체적전조솔지속상승.포화자화강도(단위질양산생적자구)선수착0.4% MnO2적참입략유상승,이후수착MnO2참잡량적증가지속하강,저주요시수금속리자점위급초교환작용력변화적영향.당측시빈솔저우1 MHz시,철양체적공모(Pcv)수착MnO2참잡량적증가지속상승,이당측시빈솔초과1 MHz후,와류손모재총손모중축점점주도지위,전조솔월고적양품월유리우획득저공모,단저일규률대우2.0% MnO2참잡적양품불괄용.총체이언,당빈솔저우1 MHz시,불참잡MnO2적Ni-Zn철양양품능구획득경저적공모;이당빈솔초과1 MHz후,참잡1.6% MnO2적Ni-Zn철양체능구획득최저적공모.
To improve the performance of Ni-Zn ferrites for power field use, the influence of MnO2 additive on the properties of Ni-Zn ferrites was investigated by the conventional powder metallurgy. The results show that MnO2 does not form a visible second phase in the doping mass fraction range of (0-2.0%). The average grain size, sintering density and real permeability gradually decrease with the increase of the MnO2 content. And the DC resistivity continuously increases with the increase of MnO2 content. The saturation magnetization (magnetic moment in unit mass) first increases slightly when mass fraction of MnO2 is less than 0.4% MnO2, and then gradually decreases with increasing the MnO2 mass fraction due to the exchange interaction of the cations. When the excitation frequency is less than 1 MHz, the power loss (Pcv) continuously increases with increasing the MnO2 content due to the decrease of average grain size. However, when the excitation frequency exceeds 1 MHz, eddy current loss gradually becomes the predominant contribution to Pcv. And the sample with a higher resistivity favors a lower Pcv, except for the sample with 2.0% MnO2. The sample without additive has the best Pcv when worked at frequencies less than 1 MHz; and the sample with 1.6% MnO2 additive has the best Pcv when worked at frequencies higher than 1 MHz.