西安电子科技大学学报(自然科学版)
西安電子科技大學學報(自然科學版)
서안전자과기대학학보(자연과학판)
JOURNAL OF XIDIAN UNIVERSITY(NATURAL SCIENCE)
2010年
2期
218-223
,共6页
无源雷达%随机有限集%概率假设密度%多目标跟踪%数据关联
無源雷達%隨機有限集%概率假設密度%多目標跟蹤%數據關聯
무원뢰체%수궤유한집%개솔가설밀도%다목표근종%수거관련
passive radar%random finite sets%probability hypothesis density (PHD)%multiple targets tracking%data association
针对组网无源雷达多目标跟踪问题,提出一种新的变数目多目标跟踪算法,实时估计目标数目与多目标状态.算法采用多站集中式融合策略解决无源观测的不完全性问题,采用最小二乘算法构造伪位置观测解决无源观测的非线性问题.针对变数目多目标跟踪问题,利用随机集理论将多目标状态与观测构成随机有限集,通过高斯混合概率假设密度滤波递归计算多目标状态随机有限集的后验强度,实时得到目标数目及其状态的估计.算法引进最小二乘算法估计出候选目标点进行数据关联,解决了无源观测线较近时无源数据关联精度下降问题.仿真实验验证了该算法的有效性.
針對組網無源雷達多目標跟蹤問題,提齣一種新的變數目多目標跟蹤算法,實時估計目標數目與多目標狀態.算法採用多站集中式融閤策略解決無源觀測的不完全性問題,採用最小二乘算法構造偽位置觀測解決無源觀測的非線性問題.針對變數目多目標跟蹤問題,利用隨機集理論將多目標狀態與觀測構成隨機有限集,通過高斯混閤概率假設密度濾波遞歸計算多目標狀態隨機有限集的後驗彊度,實時得到目標數目及其狀態的估計.算法引進最小二乘算法估計齣候選目標點進行數據關聯,解決瞭無源觀測線較近時無源數據關聯精度下降問題.倣真實驗驗證瞭該算法的有效性.
침대조망무원뢰체다목표근종문제,제출일충신적변수목다목표근종산법,실시고계목표수목여다목표상태.산법채용다참집중식융합책략해결무원관측적불완전성문제,채용최소이승산법구조위위치관측해결무원관측적비선성문제.침대변수목다목표근종문제,이용수궤집이론장다목표상태여관측구성수궤유한집,통과고사혼합개솔가설밀도려파체귀계산다목표상태수궤유한집적후험강도,실시득도목표수목급기상태적고계.산법인진최소이승산법고계출후선목표점진행수거관련,해결료무원관측선교근시무원수거관련정도하강문제.방진실험험증료해산법적유효성.
A new recursive algorithm is proposed for jointly estimating the time-varying number of targets and their states through passive radar measurements.Firstly,multi-sensor central fusion scheme is adopted to improve the weak observability for passive systems.Secondly,the least square method is embedded to calculate pseudo-location measurements by which the nonlinearity is solved.Thirdly,for the scenario of the time-varying target number,the new approach involves modeling the collections of targets and measurements as random finite sets (RFSs),respectively,and applying the Gaussian mixture probability hypothesis density (GMPHD) recursion to propagate the posterior intensity,which is a first-order statistic of the random finite sets by which both the time-varying number and states of multiple targets could be estimated properly.Furthermore,data association is accomplished by all potential targets located by the least square algorithm,which could avoid the decrease of association reliability when lines of sight (LOS) from different targets are close to each other.Simulation results in a scenario of tracking targets through multiple passive sensors show the advantages of the proposed algorithm.