中华肝脏病杂志
中華肝髒病雜誌
중화간장병잡지
CHINESE JOURNAL OF HEPATOLOGY
2009年
1期
28-32
,共5页
涂相林%肖影群%陈芳%陈家鸰%陈宏义
塗相林%肖影群%陳芳%陳傢鸰%陳宏義
도상림%초영군%진방%진가령%진굉의
肝炎,乙型,慢性%肝硬化%活组织检查%模型,预测
肝炎,乙型,慢性%肝硬化%活組織檢查%模型,預測
간염,을형,만성%간경화%활조직검사%모형,예측
Hepatitis B,chronic%Liver cirrhosis%Biopsy%Model,predictive
目的 了解慢性乙型肝炎患者中组织学肝硬化的分布情况;应用非创伤的指标建立组织学肝硬化的预测模型.方法 选择我院慢性乙型肝炎患者275例,分成模型组206例和验证组69例,均接受肝活组织检查.根据肝脏病理结果计算S0-S3组、S4(早期肝硬化)组、活动性肝硬化组的构成比.选择包括年龄、性别、病程、血常规、血清生物化学、HBV标志物、国际标准化比值(INR)、凝血酶原活动度、纤维蛋白原定量、病毒载量、血清纤维化四项、脾脏肋间厚度以及相关指数:年龄-血小板指数、AST-血小板比值指数.脾脏-血小板比值指数、年龄-脾脏-血小板比值指数(ASPRI),进行单因素和多因素Logistic回归分析,构建组织学肝硬化的预测模型,并在验证组中检验模型的诊断价值.结果 275例临床诊断慢性乙型肝炎肝活组织检查的患者中,S0~S3组193例(70.2%),S4组42例(15.3%),活动性肝硬化组40例(14.5%).单因素分析显示非肝硬化组与肝硬化组之间差异有统计学意义的指标较多,共23项;多因素Logistic回归分析筛选出判断≥S4的预测因子INR、γ-谷氨酰转肽酶、ASPRI、HBeAg,建立肝硬化预测模型.应用受试者工作特征曲线(ROC)分析显示,本模型判断≥S4的ROC曲线下面积0.871,诊断界值是0.458,敏感性84.4%,特异性75.7%,准确度79.7%;判断活动性肝硬化的ROC曲线下面积是0.753,诊断界值是0.526,敏感性81.8%,特异性62.9%,准确度67.4%.将预测模型应用于验证组,该组与模型组的ROE曲线下面积差异无统计学意义,模型在两组的诊断价值相近.结论 INR、γ-谷氨酰转肽酶、ASPRI、HBeAg与早期肝硬化和活动性肝硬化有密切关系;由此4项预测因子建立的组织学肝硬化预测模型可以用于预测早期肝硬化和活动性肝硬化.
目的 瞭解慢性乙型肝炎患者中組織學肝硬化的分佈情況;應用非創傷的指標建立組織學肝硬化的預測模型.方法 選擇我院慢性乙型肝炎患者275例,分成模型組206例和驗證組69例,均接受肝活組織檢查.根據肝髒病理結果計算S0-S3組、S4(早期肝硬化)組、活動性肝硬化組的構成比.選擇包括年齡、性彆、病程、血常規、血清生物化學、HBV標誌物、國際標準化比值(INR)、凝血酶原活動度、纖維蛋白原定量、病毒載量、血清纖維化四項、脾髒肋間厚度以及相關指數:年齡-血小闆指數、AST-血小闆比值指數.脾髒-血小闆比值指數、年齡-脾髒-血小闆比值指數(ASPRI),進行單因素和多因素Logistic迴歸分析,構建組織學肝硬化的預測模型,併在驗證組中檢驗模型的診斷價值.結果 275例臨床診斷慢性乙型肝炎肝活組織檢查的患者中,S0~S3組193例(70.2%),S4組42例(15.3%),活動性肝硬化組40例(14.5%).單因素分析顯示非肝硬化組與肝硬化組之間差異有統計學意義的指標較多,共23項;多因素Logistic迴歸分析篩選齣判斷≥S4的預測因子INR、γ-穀氨酰轉肽酶、ASPRI、HBeAg,建立肝硬化預測模型.應用受試者工作特徵麯線(ROC)分析顯示,本模型判斷≥S4的ROC麯線下麵積0.871,診斷界值是0.458,敏感性84.4%,特異性75.7%,準確度79.7%;判斷活動性肝硬化的ROC麯線下麵積是0.753,診斷界值是0.526,敏感性81.8%,特異性62.9%,準確度67.4%.將預測模型應用于驗證組,該組與模型組的ROE麯線下麵積差異無統計學意義,模型在兩組的診斷價值相近.結論 INR、γ-穀氨酰轉肽酶、ASPRI、HBeAg與早期肝硬化和活動性肝硬化有密切關繫;由此4項預測因子建立的組織學肝硬化預測模型可以用于預測早期肝硬化和活動性肝硬化.
목적 료해만성을형간염환자중조직학간경화적분포정황;응용비창상적지표건립조직학간경화적예측모형.방법 선택아원만성을형간염환자275례,분성모형조206례화험증조69례,균접수간활조직검사.근거간장병리결과계산S0-S3조、S4(조기간경화)조、활동성간경화조적구성비.선택포괄년령、성별、병정、혈상규、혈청생물화학、HBV표지물、국제표준화비치(INR)、응혈매원활동도、섬유단백원정량、병독재량、혈청섬유화사항、비장륵간후도이급상관지수:년령-혈소판지수、AST-혈소판비치지수.비장-혈소판비치지수、년령-비장-혈소판비치지수(ASPRI),진행단인소화다인소Logistic회귀분석,구건조직학간경화적예측모형,병재험증조중검험모형적진단개치.결과 275례림상진단만성을형간염간활조직검사적환자중,S0~S3조193례(70.2%),S4조42례(15.3%),활동성간경화조40례(14.5%).단인소분석현시비간경화조여간경화조지간차이유통계학의의적지표교다,공23항;다인소Logistic회귀분석사선출판단≥S4적예측인자INR、γ-곡안선전태매、ASPRI、HBeAg,건립간경화예측모형.응용수시자공작특정곡선(ROC)분석현시,본모형판단≥S4적ROC곡선하면적0.871,진단계치시0.458,민감성84.4%,특이성75.7%,준학도79.7%;판단활동성간경화적ROC곡선하면적시0.753,진단계치시0.526,민감성81.8%,특이성62.9%,준학도67.4%.장예측모형응용우험증조,해조여모형조적ROE곡선하면적차이무통계학의의,모형재량조적진단개치상근.결론 INR、γ-곡안선전태매、ASPRI、HBeAg여조기간경화화활동성간경화유밀절관계;유차4항예측인자건립적조직학간경화예측모형가이용우예측조기간경화화활동성간경화.
Objective To construct a noninvasive model to predict histological liver cirrhosis in patients with chronic hepatitis B.Methods 275 patients with chronic hepatitis B were divided into a training group(206 cases)and a validation group(69 cases).The constituent ratios of patients in the fibrosis stages S0-S3,fibrosis stage S4(early cirrhosis)and active cirrhosis stage were calculated according to the liver biospy results.30 noninvasive variables,including age-platelet index(API),aspartate aminotransferase to platelet ratio index(APRI),spleen-platelet ratio index(SRPI)and age-spleen-platelet ratio index(ASPRI),were analyzed by univariate analysis and multivariate logistic regression.Variables that were significantly different between patients with and without cirrhosis were used to construct a noninvasive prediction model,and the model was then tested in the validation group.Results(1)Of the 275 patients with chronic hepatitis B,193(70.2%)were in the fibrosis stages S0-S3,42(15.3%)in fibrosis stage $4,40(14.5%)in active cirrhosis stage.(2)There were 23 variables that are significantly different between patients with and without cirrhosis by univariate analysis.The 23 variables were further analyzed by multivariate logistic regression,and 4 independent factors,including international normalized ratio(INR),gamma glutamyltranspeptidase (GGT),ASPRI,hepatitis B e antigen(HBeAg)were used to construct a noninvasive prediction model.(3)By receiver operating characteristic curves(ROC)analysis,to discriminate patients in stages S0-$3 from patients in stage S4 and patients in active cirrhosis stage,the area under ROC(AUROC),cut-off value,sensitivity,specificity and accuracy of the model were 0.871,0.458,84.4%,75.7%,and 79.7% respectively.To discrimi-nate patients in active cirrhosis stage from patients in other stages,the AUROC,cut-off value,sensitivity,specificity and accuracy were 0.753,0.526,81.8%,62.9%,and 67.4% respectively.There was no significant difference in AUROC between the training group and the validation group(P < 0.05).Conclusion INR,GGT,ASPRI and HBeAg are associated with early cirrhosis and active cirrhosis.Our model can be used to predict early cirrhosis and active cirrhosis.