中南大学学报(自然科学版)
中南大學學報(自然科學版)
중남대학학보(자연과학판)
JOURNAL OF CENTRAL SOUTH UNIVERSITY
2009年
5期
1199-1204
,共6页
何亚群%赵跃民%段晨龙%王海锋%左蔚然
何亞群%趙躍民%段晨龍%王海鋒%左蔚然
하아군%조약민%단신룡%왕해봉%좌위연
主动脉动气流%动力学模型%数值模拟%流型%分选
主動脈動氣流%動力學模型%數值模擬%流型%分選
주동맥동기류%동역학모형%수치모의%류형%분선
active pulsing air%dynamic models%numerical simulation%flow pattern%classification
通过分析不同雷诺数流型下颗粒运动阻力系数的差异,考虑主动脉动气流流场中颗粒运动所受到的附加质量力作用,分别得出斯托克斯和牛顿2种流体的颗粒在主动脉动气流场运动的动力学方程.对直径和密度不同,但空气动力学特性相同的等沉球形颗粒,进行动力学方程的计算机数值模拟,并优化动力学模型参数.在此基础上,应用颗粒高速动态分析系统对示踪颗粒的运动规律进行分析,研究主动脉动气流分选优于传统气流分选的机理.研究结果表明,数值模拟与示踪颗粒的实验室分选试验结果具有很好的一致性,低密度颗粒速度幅值与均值相对误差小于8%,高密度颗粒速度幅值与均值相对误差小于5%.
通過分析不同雷諾數流型下顆粒運動阻力繫數的差異,攷慮主動脈動氣流流場中顆粒運動所受到的附加質量力作用,分彆得齣斯託剋斯和牛頓2種流體的顆粒在主動脈動氣流場運動的動力學方程.對直徑和密度不同,但空氣動力學特性相同的等沉毬形顆粒,進行動力學方程的計算機數值模擬,併優化動力學模型參數.在此基礎上,應用顆粒高速動態分析繫統對示蹤顆粒的運動規律進行分析,研究主動脈動氣流分選優于傳統氣流分選的機理.研究結果錶明,數值模擬與示蹤顆粒的實驗室分選試驗結果具有很好的一緻性,低密度顆粒速度幅值與均值相對誤差小于8%,高密度顆粒速度幅值與均值相對誤差小于5%.
통과분석불동뢰낙수류형하과립운동조력계수적차이,고필주동맥동기류류장중과립운동소수도적부가질량력작용,분별득출사탁극사화우돈2충류체적과립재주동맥동기류장운동적동역학방정.대직경화밀도불동,단공기동역학특성상동적등침구형과립,진행동역학방정적계산궤수치모의,병우화동역학모형삼수.재차기출상,응용과립고속동태분석계통대시종과립적운동규률진행분석,연구주동맥동기류분선우우전통기류분선적궤리.연구결과표명,수치모의여시종과립적실험실분선시험결과구유흔호적일치성,저밀도과립속도폭치여균치상대오차소우8%,고밀도과립속도폭치여균치상대오차소우5%.
Considering the difference of drag coefficients of particles moving through areas of varying Reynolds numbers, an extra-mass force acting on particles in the active pulsing air field was introduced. Models of the dynamic motion in which the particles both in Stokes and Newtonian fluids, follow as they move in the pulsing air flow were developed. And a computer numerical simulation was carried out that showed the traces of particles with different densities and diameters, but similar aerodynamic characteristics, as they moved through the turbulent flow, to modify and define the parameters of the models. The motion law of tracing spheres was studied in a laboratory active pulsing air classifier with a high-speed video camera and motion particle analyzer. The mechanism of active pulsing air classification was studied. The results show that simulation can predict the observed results with artificial tracing spheres separated by the laboratory equipment. The comparison of the simulation and laboratory experiment results show that the relative errors of velocities are less than 8% for lighter particles and less than 5% for heavier particles.