兵工学报
兵工學報
병공학보
ACTA ARMAMENTARII
2010年
1期
119-123
,共5页
曲国福%赵凡%刘贵忠%刘宏昭
麯國福%趙凡%劉貴忠%劉宏昭
곡국복%조범%류귀충%류굉소
飞行器控制%导航技术%微机电系统陀螺%随机漂移误差%小波变换%Karhunen-Loeve变换%阈值%去噪
飛行器控製%導航技術%微機電繫統陀螺%隨機漂移誤差%小波變換%Karhunen-Loeve變換%閾值%去譟
비행기공제%도항기술%미궤전계통타라%수궤표이오차%소파변환%Karhunen-Loeve변환%역치%거조
control and navigation technology of aerocraft%micro-electro-mechanical system gyro%random drift error%wavelet transform%Karhunen-Loeve transformation%threshold value%denoising
为了减少梳状音叉微机电系统(MEMS)陀螺的随机漂移误差,提出了一种小波域上的Karhunen-Loeve变换(KLT)的MEMS陀螺漂移信号的去噪方法.其主要思想是:先对分段的MEMS陀螺漂移信号进行小波分解;然后对各个中高频子带进行6抽头滤波,插值成和最高频带相同长度的样本点后,利用小波各尺度间的相似性进行高频分量的KLT变换,在一定程度上去除不相干噪声;最后对KLT降噪后的信号再进行小波阈值处理完成进一步的降噪.实验结果表明,所提方法相对于基于小波变换的各种阈值方法,陀螺输出信号的方差、零偏稳定性和随机游走误差都有了明显的改善.
為瞭減少梳狀音扠微機電繫統(MEMS)陀螺的隨機漂移誤差,提齣瞭一種小波域上的Karhunen-Loeve變換(KLT)的MEMS陀螺漂移信號的去譟方法.其主要思想是:先對分段的MEMS陀螺漂移信號進行小波分解;然後對各箇中高頻子帶進行6抽頭濾波,插值成和最高頻帶相同長度的樣本點後,利用小波各呎度間的相似性進行高頻分量的KLT變換,在一定程度上去除不相榦譟聲;最後對KLT降譟後的信號再進行小波閾值處理完成進一步的降譟.實驗結果錶明,所提方法相對于基于小波變換的各種閾值方法,陀螺輸齣信號的方差、零偏穩定性和隨機遊走誤差都有瞭明顯的改善.
위료감소소상음차미궤전계통(MEMS)타라적수궤표이오차,제출료일충소파역상적Karhunen-Loeve변환(KLT)적MEMS타라표이신호적거조방법.기주요사상시:선대분단적MEMS타라표이신호진행소파분해;연후대각개중고빈자대진행6추두려파,삽치성화최고빈대상동장도적양본점후,이용소파각척도간적상사성진행고빈분량적KLT변환,재일정정도상거제불상간조성;최후대KLT강조후적신호재진행소파역치처리완성진일보적강조.실험결과표명,소제방법상대우기우소파변환적각충역치방법,타라수출신호적방차、령편은정성화수궤유주오차도유료명현적개선.
For effectively reducing the random drift error in micro-electro-mechanical system (MEMS) gyro signals, a novel denoising method is presented, namely the Karhunen-Loeve transformation (KLT) in the wavelet domain. The wavelet decomposition was performed on the segmented MEMS gyro signals;the 6-tap filter was applied to the corresponding medium and high frequency components;the KLT was carried out by the similarity among the wavelet scales for the interpolated high-frequency components to eliminate the extraneous noise;the threshold processing was further implemented on the KLT-denoised signal for better denoising. The calculated results show that the proposed denoising method can make variance,null deflection stability and random drift error improved obviously in comparison with the wavelet threshold based denoising methods.