中国科学技术大学学报
中國科學技術大學學報
중국과학기술대학학보
JOURNAL OF UNIVERSITY OF SCIENCE AND TECHNOLOGY OF CHINA
2006年
3期
244-248
,共5页
超立方体%折叠超立方体%容错%哈密顿圈
超立方體%摺疊超立方體%容錯%哈密頓圈
초립방체%절첩초립방체%용착%합밀돈권
hypercube%folded hypercube%fault-tolerance%Hamiltonian cycle
证明了在至多具有2n-3条故障边的n维(n≥3)折叠超立方体网络中,如果每个顶点至少与两条非故障边相邻,则存在一个不含故障边的哈密顿圈.这个界是最好的.
證明瞭在至多具有2n-3條故障邊的n維(n≥3)摺疊超立方體網絡中,如果每箇頂點至少與兩條非故障邊相鄰,則存在一箇不含故障邊的哈密頓圈.這箇界是最好的.
증명료재지다구유2n-3조고장변적n유(n≥3)절첩초립방체망락중,여과매개정점지소여량조비고장변상린,칙존재일개불함고장변적합밀돈권.저개계시최호적.
For any n-dimensional (n≥3) folded hypercube with at most 2n-3 faulty edges in which each vertex is incident with at least two fault-free edges, it is proved that there exists a fault-free Hamiltonian cycle. The result is optimal.