软件学报
軟件學報
연건학보
JOURNAL OF SOFTWARE
2009年
5期
1146-1155
,共10页
图像放大%几何相似性%边缘保护%任意倍放大%非局部平均
圖像放大%幾何相似性%邊緣保護%任意倍放大%非跼部平均
도상방대%궤하상사성%변연보호%임의배방대%비국부평균
image magnification%local geometric similarity%arbitrary factor%non-local means
图像放大技术是医学图像处理中的重要领域.医学图像细节丰富处经常呈现出明显的几何结构特征或模式,如边缘.提出了-种基于学习的方法,将低分辨率图像块作为可用的邻域像素并提取其几何特征信息组成训练集,与高分辨率图像块之间建立局部对应关系,这种对应关系即为局部几何相似性.将训练集信息有效传递至待重建高分辨率图像块周像放大的问题转化为重建系数的最优化问题,并且基于非局部平均思想,将其进而转化为加权最小二乘问题得到正则化解.实验结果表明,本方法不仅可以进行任意倍图像放大,且它可以摆脱-般方法对训练集合的依赖,具有较好的独立性,自适应性和边缘保持特性.
圖像放大技術是醫學圖像處理中的重要領域.醫學圖像細節豐富處經常呈現齣明顯的幾何結構特徵或模式,如邊緣.提齣瞭-種基于學習的方法,將低分辨率圖像塊作為可用的鄰域像素併提取其幾何特徵信息組成訓練集,與高分辨率圖像塊之間建立跼部對應關繫,這種對應關繫即為跼部幾何相似性.將訓練集信息有效傳遞至待重建高分辨率圖像塊週像放大的問題轉化為重建繫數的最優化問題,併且基于非跼部平均思想,將其進而轉化為加權最小二乘問題得到正則化解.實驗結果錶明,本方法不僅可以進行任意倍圖像放大,且它可以襬脫-般方法對訓練集閤的依賴,具有較好的獨立性,自適應性和邊緣保持特性.
도상방대기술시의학도상처리중적중요영역.의학도상세절봉부처경상정현출명현적궤하결구특정혹모식,여변연.제출료-충기우학습적방법,장저분변솔도상괴작위가용적린역상소병제취기궤하특정신식조성훈련집,여고분변솔도상괴지간건립국부대응관계,저충대응관계즉위국부궤하상사성.장훈련집신식유효전체지대중건고분변솔도상괴주상방대적문제전화위중건계수적최우화문제,병차기우비국부평균사상,장기진이전화위가권최소이승문제득도정칙화해.실험결과표명,본방법불부가이진행임의배도상방대,차타가이파탈-반방법대훈련집합적의뢰,구유교호적독립성,자괄응성화변연보지특성.
Image magnification is an important technology in medical image processing. High detail areas in medical images most often have a definite geometric structure or pattern, such as in the case of edges. This paper proposes a learning-based method. Geometric features extracted from the available neighboring pixels in the Low-resolution (LR) image form the training set. Assuming the training set is locally corresponding to geometric features from the High-resolution (HR) image patch to be reconstructed. Local geometric similarity is described as the correspondence. The task of image magnification is formulated as an optimization problem, where the optimization coefficients can adaptively tune its value to effectively propagating the features from the training set to the target HR image patch. The advantages are the ability to produce a magnified image by any factor, and not require any outlier supporters. A Weighted Least Square (WLS) method is provided to offer a convenient way of finding the regularized optimal solution, where the weight function is determined by the non-local means. Simulation and comparison results show that the proposed method is independent, adaptive and can produce sharp edges with rare ringing or jaggy artifacts.