太原科技大学学报
太原科技大學學報
태원과기대학학보
JOURNAL OF TAIYUAN UNIVERSITY OF SCIENCE AND TECHNOLOGY
2012年
1期
80-82
,共3页
图%拉普拉斯矩阵%非负矩阵%最大拉普拉斯特征值
圖%拉普拉斯矩陣%非負矩陣%最大拉普拉斯特徵值
도%랍보랍사구진%비부구진%최대랍보랍사특정치
graph%laplacian matrix%nonnegative matrix%largest Laplacian eigenvalue
设G=(V,E)是n阶简单连通图,D(G)和A(G)分别表示图的度对角矩阵和邻接矩阵,L(G)=D(G)-A(G)则称为图G的拉普拉斯矩阵。利用图的顶点度和平均二次度结合非负矩阵谱理论给出了图的最大拉普拉斯特征值的新上界,同时给出了达到上界的极图,并且通过举例与已有的上界作了比较,说明在一定程度上优于已有结果。
設G=(V,E)是n階簡單連通圖,D(G)和A(G)分彆錶示圖的度對角矩陣和鄰接矩陣,L(G)=D(G)-A(G)則稱為圖G的拉普拉斯矩陣。利用圖的頂點度和平均二次度結閤非負矩陣譜理論給齣瞭圖的最大拉普拉斯特徵值的新上界,同時給齣瞭達到上界的極圖,併且通過舉例與已有的上界作瞭比較,說明在一定程度上優于已有結果。
설G=(V,E)시n계간단련통도,D(G)화A(G)분별표시도적도대각구진화린접구진,L(G)=D(G)-A(G)칙칭위도G적랍보랍사구진。이용도적정점도화평균이차도결합비부구진보이론급출료도적최대랍보랍사특정치적신상계,동시급출료체도상계적겁도,병차통과거례여이유적상계작료비교,설명재일정정도상우우이유결과。
Let G = (V,E)be a simple and connected graph with n vertices,D(G) and A(G) be the diagonal matrix of vertex degrees and the adjacency matrix of G,respectively. Then the matrix L(G) =D(G) -A(G) is called as the Laplacian matrix of G. In this paper, the spectral theory of nonnegative matrices was used to present a new upper bound on the largest Laplacian Eigenvalue of graphs in terms of the vertex degree and the average 2-degree. Moreover, the extremal graph which achieves the upper bound was determined. Besides, a example is given to illus- trate that the above result is better than the earlier and recent ones in some sense.