吉林大学学报(理学版)
吉林大學學報(理學版)
길림대학학보(이학판)
JOURNAL OF JILIN UNIVERSITY(SCIENCE EDITION)
2009年
6期
1196-1198
,共3页
强混合序列%部分和乘积%中心极限定理%同分布%对数正态
彊混閤序列%部分和乘積%中心極限定理%同分佈%對數正態
강혼합서렬%부분화승적%중심겁한정리%동분포%대수정태
strong mixing sequences%product of sums%central limit theorem%identically distribution%lognormal distribution
设{X_n,n≥1}是同分布正的强混合随机变量序列. 利用强混合序列的中心极限定理以及大数定律, 在适当的条件下证明了(∏_(k=1)~nS_k/n!μ~n)~(1(γσ_n))d→e~N, n→∞, 其中S_k=∑_(i=1)~kX_i, μ=EX_1>0, σ~2=Var X_1<∞, γ=σ/μ, σ_n~2=Var(1/γ∑_(k=1)~n(S_k/kμ-1)), N为标准正态随机变量.
設{X_n,n≥1}是同分佈正的彊混閤隨機變量序列. 利用彊混閤序列的中心極限定理以及大數定律, 在適噹的條件下證明瞭(∏_(k=1)~nS_k/n!μ~n)~(1(γσ_n))d→e~N, n→∞, 其中S_k=∑_(i=1)~kX_i, μ=EX_1>0, σ~2=Var X_1<∞, γ=σ/μ, σ_n~2=Var(1/γ∑_(k=1)~n(S_k/kμ-1)), N為標準正態隨機變量.
설{X_n,n≥1}시동분포정적강혼합수궤변량서렬. 이용강혼합서렬적중심겁한정리이급대수정률, 재괄당적조건하증명료(∏_(k=1)~nS_k/n!μ~n)~(1(γσ_n))d→e~N, n→∞, 기중S_k=∑_(i=1)~kX_i, μ=EX_1>0, σ~2=Var X_1<∞, γ=σ/μ, σ_n~2=Var(1/γ∑_(k=1)~n(S_k/kμ-1)), N위표준정태수궤변량.
Let { X_n, n≥1} be a sequence of strong mixing identically distributed positive random variable, under some suitable conditions, by means of the central limit theorem and the law of large numbers of strong mixing sequence, it is proved that (∏_(k_1)~nS_k/n!μ~n)~(1/(γσ_n))d→ e~N, n →∞ , where S_k = ∑_(I=1)~k X_I,μ= EX_1 > 0, σ~2 = Var X_1 < ∞, γ =σ/μ,σ_n~2 = Var(1/γ ∑_(k=1)~n (S_k/kμ - 1 )), and N is a standrad normal random variable.