农业工程学报
農業工程學報
농업공정학보
2009年
12期
151-155
,共5页
邰书静%张仁和%史俊通%薛吉全%张兴华%马国胜%路海东
邰書靜%張仁和%史俊通%薛吉全%張興華%馬國勝%路海東
태서정%장인화%사준통%설길전%장흥화%마국성%로해동
近红外光谱%模型%纤维%玉米秸秆%体外干物质消化率%可溶性糖%校正
近紅外光譜%模型%纖維%玉米秸稈%體外榦物質消化率%可溶性糖%校正
근홍외광보%모형%섬유%옥미갈간%체외간물질소화솔%가용성당%교정
near infrared reflectance spectroscopy%models%fibers%maize stover%in vitro dry matter digestion%water soluble carbohydrate%calibration
为了对玉米秸秆的饲用品质进行可靠、便捷、快速的分析和评价,该研究以不同品种、密度、氮肥和水分处理的不同发育时期和不同部位玉米秸秆为试验材料,应用近红外光谱(NIRS)技术和偏最小二乘法(PLS),采用一阶导数+中心化+多元散射校正的光谱数据预处理方法,构建了玉米秸秆体外干物质消化率(IVDMD)、酸性洗涤纤维(ADF)、中性洗涤纤维(NDF)和可溶性糖(WSC)含量的NIRS分析模型.所建立的IVDMD、ADF、NDF和WSC含量的NIRS校正模型决定系数(R_(cal)~2)分别为0.9906、0.9870、O.9931和0.9802,交叉验证决定系数(R_(cv)~2)分别为0.9593、0.9413、0.9678和0.9342,外部验证决定系数(R_(val)~2)分别为0.9549、0.9353、0.9519和0.9191,各项标准差(SEC、SECV和SEP)为0.935~1.904,相对分析误差(RPD)均大于3.结果表明,各参数的NIRS分析模型可用于玉米秸秆饲用品质的分析和品种选育的快速鉴定.
為瞭對玉米秸稈的飼用品質進行可靠、便捷、快速的分析和評價,該研究以不同品種、密度、氮肥和水分處理的不同髮育時期和不同部位玉米秸稈為試驗材料,應用近紅外光譜(NIRS)技術和偏最小二乘法(PLS),採用一階導數+中心化+多元散射校正的光譜數據預處理方法,構建瞭玉米秸稈體外榦物質消化率(IVDMD)、痠性洗滌纖維(ADF)、中性洗滌纖維(NDF)和可溶性糖(WSC)含量的NIRS分析模型.所建立的IVDMD、ADF、NDF和WSC含量的NIRS校正模型決定繫數(R_(cal)~2)分彆為0.9906、0.9870、O.9931和0.9802,交扠驗證決定繫數(R_(cv)~2)分彆為0.9593、0.9413、0.9678和0.9342,外部驗證決定繫數(R_(val)~2)分彆為0.9549、0.9353、0.9519和0.9191,各項標準差(SEC、SECV和SEP)為0.935~1.904,相對分析誤差(RPD)均大于3.結果錶明,各參數的NIRS分析模型可用于玉米秸稈飼用品質的分析和品種選育的快速鑒定.
위료대옥미갈간적사용품질진행가고、편첩、쾌속적분석화평개,해연구이불동품충、밀도、담비화수분처리적불동발육시기화불동부위옥미갈간위시험재료,응용근홍외광보(NIRS)기술화편최소이승법(PLS),채용일계도수+중심화+다원산사교정적광보수거예처리방법,구건료옥미갈간체외간물질소화솔(IVDMD)、산성세조섬유(ADF)、중성세조섬유(NDF)화가용성당(WSC)함량적NIRS분석모형.소건립적IVDMD、ADF、NDF화WSC함량적NIRS교정모형결정계수(R_(cal)~2)분별위0.9906、0.9870、O.9931화0.9802,교차험증결정계수(R_(cv)~2)분별위0.9593、0.9413、0.9678화0.9342,외부험증결정계수(R_(val)~2)분별위0.9549、0.9353、0.9519화0.9191,각항표준차(SEC、SECV화SEP)위0.935~1.904,상대분석오차(RPD)균대우3.결과표명,각삼수적NIRS분석모형가용우옥미갈간사용품질적분석화품충선육적쾌속감정.
In order to reliably, conveniently and rapidly analyze and evaluate forage quality of maize stover, the samples of maize stover from different varieties and treatments of density, nitrogenous fertilizer and water were used to establish near infrared reflectance spectroscopy (NIRS) calibration models of in vitro dry matter digestion (IVDMD), acid detergent fiber (ADF), neutral detergent fiber (NDF) and water soluble carbohydrate (WSC) of maize stover with near infrared reflectance spectroscopy (NIRS) technique, partial least square regression (PLS) and data pretreatment of Ist derivative+mean center+Multiple scarer correction. The results showed that determination coefficients of calibration (R_(cal)~2) about those models were 0.9906, 0.9870, 0.9931 and 0.9802 and those of cross validation (R_(cv)~2) and validation (R_(val)~2) were 0.9593(0.9549),0.9413(0.9353), 0.9678(0.9519) and 0.9342(0.9191) for IVDMD, ADF, NDF and WSC, respectively. Standard error of calibration, cross validation and prediction (SEC, SECV and SEP) ranged from 0.935 to 1.904. All values of relative percent differences (RPD) were greater than three. It demonstrated that these calibration models could be used to rapidly and accurately predict forage quality of maize stover and screen various samples in maize breeding.