东南大学学报(英文版)
東南大學學報(英文版)
동남대학학보(영문판)
JOURNAL OF SOUTHEAST UNIVERSITY
2011年
3期
295-299
,共5页
柳善建%沈炯%刘西陲%李益国
柳善建%瀋炯%劉西陲%李益國
류선건%침형%류서수%리익국
仿射模糊模型%稳定性分析%线形矩阵不等式%模糊Lyapunov函数
倣射模糊模型%穩定性分析%線形矩陣不等式%模糊Lyapunov函數
방사모호모형%은정성분석%선형구진불등식%모호Lyapunov함수
affine fuzzy system%stability analysis%linear matrix inequalities%fuzzy Lyapunov function
研究了基于模糊Lyapunov函数分析连续仿射模糊系统稳定性的方法.首先,对模糊系统局部模型的后件部分进行扩展处理,以便于借鉴齐次模糊模型的稳定性分析方法.然后,分别得到基于改进公共Lyapunov函数与模糊Lyapunov函数的系统稳定条件,该条件可表示为一组线性矩阵不等式.通过算例对所得稳定条件进行对比,结果表明:基于模糊Lyapunov函数得到的稳定条件与基于改进公共Lyapunov函数的相比具有较小保守性;对后件部分进行扩展处理后,尽管稳定性证明方法较简便,但与不进行后件处理得到的稳定条件相比,可行解范围有所减小.最后,为了增大模糊Lyapunov函数的应用范围,提出了对模糊空间进行划分的方法,该方法可对隶属度函数为三角形或梯形的模糊系统进行稳定性分析,得到了基于分段模糊Lyapunov函数的系统稳定条件,并通过算例验证了所提方法的有效性.
研究瞭基于模糊Lyapunov函數分析連續倣射模糊繫統穩定性的方法.首先,對模糊繫統跼部模型的後件部分進行擴展處理,以便于藉鑒齊次模糊模型的穩定性分析方法.然後,分彆得到基于改進公共Lyapunov函數與模糊Lyapunov函數的繫統穩定條件,該條件可錶示為一組線性矩陣不等式.通過算例對所得穩定條件進行對比,結果錶明:基于模糊Lyapunov函數得到的穩定條件與基于改進公共Lyapunov函數的相比具有較小保守性;對後件部分進行擴展處理後,儘管穩定性證明方法較簡便,但與不進行後件處理得到的穩定條件相比,可行解範圍有所減小.最後,為瞭增大模糊Lyapunov函數的應用範圍,提齣瞭對模糊空間進行劃分的方法,該方法可對隸屬度函數為三角形或梯形的模糊繫統進行穩定性分析,得到瞭基于分段模糊Lyapunov函數的繫統穩定條件,併通過算例驗證瞭所提方法的有效性.
연구료기우모호Lyapunov함수분석련속방사모호계통은정성적방법.수선,대모호계통국부모형적후건부분진행확전처리,이편우차감제차모호모형적은정성분석방법.연후,분별득도기우개진공공Lyapunov함수여모호Lyapunov함수적계통은정조건,해조건가표시위일조선성구진불등식.통과산례대소득은정조건진행대비,결과표명:기우모호Lyapunov함수득도적은정조건여기우개진공공Lyapunov함수적상비구유교소보수성;대후건부분진행확전처리후,진관은정성증명방법교간편,단여불진행후건처리득도적은정조건상비,가행해범위유소감소.최후,위료증대모호Lyapunov함수적응용범위,제출료대모호공간진행화분적방법,해방법가대대속도함수위삼각형혹제형적모호계통진행은정성분석,득도료기우분단모호Lyapunov함수적계통은정조건,병통과산례험증료소제방법적유효성.
An analysis method based on the fuzzy Lyapunov functions is presented to analyze the stability of the continuous affine fuzzy systems.First,a method is introduced to deal with the consequent part of the fuzzy local model.Thus,the stability analysis method of the homogeneous fuzzy system can be used for reference.Stability conditions are derived in terms of linear matrix inequalities based on the fuzzy Lyapunov functions and the modified common Lyapunov functions,respectively.The results demonstrate that the stability result based on the fuzzy Lyapunov functions is less conservative than that based on the modified common Lyapunov functions via numerical examples.Compared with the method which does not expand the consequent part,the proposed method is simpler but its feasible region is reduced.Finally,in order to expand the application of the fuzzy Lyapunov functions,the piecewise fuzzy Lyapunov function is proposed,which can be used to analyze the stability for triangular or trapezoidal membership functions and obtain the stability conditions.A numerical example validates the effectiveness of the proposed approach.