机械强度
機械彊度
궤계강도
JOURNAL OF MECHANICAL STRENGTH
2009年
6期
932-938
,共7页
多孔材料%Voronoi分布%平台冲击压力%密实化应变能
多孔材料%Voronoi分佈%平檯遲擊壓力%密實化應變能
다공재료%Voronoi분포%평태충격압력%밀실화응변능
Cellular material%Voronoi tessellation%Plateau crush pressure%Densification strain energy
利用随机Voronoi技术生成2维随机模型,结合有限元分析方法系统研究多孔材料在x1-x2平面内冲击载荷作用下的动态特性.模型包含胞孔形状的不规则性和孔壁厚度的不均匀性,以及孔壁的随机不完整性.模拟结果发现,在中低速冲击时Voronoi模型并不出现如规则蜂窝模型一样的"X"和"V"形的变形,而出现几条局部随机变形带;在冲击速度比较高时,局部变形带并不明显,在冲击面端附近区域出现"I"形的变形.发现平台冲击压力和胞孔形状不规则度之间具有比较复杂的关系;很小的孔边不完整性将会造成材料强度很大的"丢失";尽管组成多孔材料的母材是理想弹-塑性材料,但应用Voronoi随机模型描述的多孔材料是一应变率敏感材料.
利用隨機Voronoi技術生成2維隨機模型,結閤有限元分析方法繫統研究多孔材料在x1-x2平麵內遲擊載荷作用下的動態特性.模型包含胞孔形狀的不規則性和孔壁厚度的不均勻性,以及孔壁的隨機不完整性.模擬結果髮現,在中低速遲擊時Voronoi模型併不齣現如規則蜂窩模型一樣的"X"和"V"形的變形,而齣現幾條跼部隨機變形帶;在遲擊速度比較高時,跼部變形帶併不明顯,在遲擊麵耑附近區域齣現"I"形的變形.髮現平檯遲擊壓力和胞孔形狀不規則度之間具有比較複雜的關繫;很小的孔邊不完整性將會造成材料彊度很大的"丟失";儘管組成多孔材料的母材是理想彈-塑性材料,但應用Voronoi隨機模型描述的多孔材料是一應變率敏感材料.
이용수궤Voronoi기술생성2유수궤모형,결합유한원분석방법계통연구다공재료재x1-x2평면내충격재하작용하적동태특성.모형포함포공형상적불규칙성화공벽후도적불균균성,이급공벽적수궤불완정성.모의결과발현,재중저속충격시Voronoi모형병불출현여규칙봉와모형일양적"X"화"V"형적변형,이출현궤조국부수궤변형대;재충격속도비교고시,국부변형대병불명현,재충격면단부근구역출현"I"형적변형.발현평태충격압력화포공형상불규칙도지간구유비교복잡적관계;흔소적공변불완정성장회조성재료강도흔대적"주실";진관조성다공재료적모재시이상탄-소성재료,단응용Voronoi수궤모형묘술적다공재료시일응변솔민감재료.
The in-plane dynamic crushing behavior of cellular materials is investigated by using the Voronoi models with the imperfections of configuration and finite element method. The simulation results reveal that when the impact velocities is low and moderate, the Voronoi model does not appear the "X" and "V" shaped deformation as in a perfectly order honeycomb and the random local deformation band is found. However, the "I" shaped deformation is seen near the loading face at high impact velocities and the local deformation band is not clearly seen. It is also found that the relation between plateau crush pressure and cell shape irregularity is complicated;the cellular material that is described by the Voronoi model is the material witch is sensitive to the strain rate, despite the matrix material is elastic-perfectly plastic. It is the behavior of the cellular materials that a few cell walls deleted lead to both plateau crush pressure and densification strain energy to decrease sharply.