电工技术学报
電工技術學報
전공기술학보
TRANSACTIONS OF CHINA ELECTROTECHNICAL SOCIETY
2009年
10期
170-175
,共6页
龙伯华%谭阳红%许慧%孙磊%文娟
龍伯華%譚暘紅%許慧%孫磊%文娟
룡백화%담양홍%허혜%손뢰%문연
故障诊断%脉波整流电路%量子计算%神经网络%电力电子电路
故障診斷%脈波整流電路%量子計算%神經網絡%電力電子電路
고장진단%맥파정류전로%양자계산%신경망락%전력전자전로
Fault diagnosis%pulse wave rectifier circuit%quantum computation%neural network%power electronic circuit
针对电力电子电路故障诊断时故障模式间存在交叉数据的模式识别问题,在量子计算和人工神经网络结合的基础上,提出了一种基于量子神经网络的故障诊断方法,并以双桥12相脉波整流电路为例进行故障诊断.实验结果表明:量子神经网络有一种固有的模糊性,它能将不确定性数据合理地分配到各故障模式中,从而使网络具有高性能、更好的鲁棒性和省时的特点,且能正确地识别大部分的样本故障模式,成功地完成电力电子电路的故障诊断.
針對電力電子電路故障診斷時故障模式間存在交扠數據的模式識彆問題,在量子計算和人工神經網絡結閤的基礎上,提齣瞭一種基于量子神經網絡的故障診斷方法,併以雙橋12相脈波整流電路為例進行故障診斷.實驗結果錶明:量子神經網絡有一種固有的模糊性,它能將不確定性數據閤理地分配到各故障模式中,從而使網絡具有高性能、更好的魯棒性和省時的特點,且能正確地識彆大部分的樣本故障模式,成功地完成電力電子電路的故障診斷.
침대전력전자전로고장진단시고장모식간존재교차수거적모식식별문제,재양자계산화인공신경망락결합적기출상,제출료일충기우양자신경망락적고장진단방법,병이쌍교12상맥파정류전로위례진행고장진단.실험결과표명:양자신경망락유일충고유적모호성,타능장불학정성수거합리지분배도각고장모식중,종이사망락구유고성능、경호적로봉성화성시적특점,차능정학지식별대부분적양본고장모식,성공지완성전력전자전로적고장진단.
In this paper, a method for fault diagnosis based on quantum neural network is presented on combination of quantum computation and artificial neural network, which aims at the pattern recognition problems of cross-data in fault modes, during the power electronic circuits fault diagnosis. By taking the Twin-bridge 12 phase pulse wave rectifier circuit as an example, the results show that quantum neural network has the characteristic of inherent ambiguity, which can assign the uncertainty data to each fault mode reasonably, making the network with the features of high capacity, better robust and timesaving. Meanwhile it can identify the majority of the sample fault modes correctly, and has accomplished the fault diagnosis of power electronic circuits successfully.