南通大学学报:自然科学版
南通大學學報:自然科學版
남통대학학보:자연과학판
Journal of Nantong University (Natural Science Edition)
2011年
4期
26-30
,共5页
多组分体系%偏最小二乘法%主成分分析%人工神经网络%定性定量分析
多組分體繫%偏最小二乘法%主成分分析%人工神經網絡%定性定量分析
다조분체계%편최소이승법%주성분분석%인공신경망락%정성정량분석
multi-component system%partal least squares%principal component analysis%artificial neural network%qualitative and quantitative analysis
采用偏最小二乘法(PLS)和主成分分析法(PCA)对光谱数据进行主成分提取,并利用遗传算法(GA)对波长进行选择,剔除不相关的变量,达到压缩数据的目的;采用反向传播人工神经网络(BP-ANN)方法,对多组分体系进行定性定量分析.建立了一个PLS-BP-ANN、PCA-BP-ANN、GA-BP-ANN和BP-ANN四种模型的化学计量学多组分分析平台,对谱带混叠严重的5种大气有机毒物——苯、甲苯、甲醇、氯仿和丙酮进行了定性定量测定,比较了4种模型的误差,结果表明,PLS-BP-ANN模型得到的结果最好.
採用偏最小二乘法(PLS)和主成分分析法(PCA)對光譜數據進行主成分提取,併利用遺傳算法(GA)對波長進行選擇,剔除不相關的變量,達到壓縮數據的目的;採用反嚮傳播人工神經網絡(BP-ANN)方法,對多組分體繫進行定性定量分析.建立瞭一箇PLS-BP-ANN、PCA-BP-ANN、GA-BP-ANN和BP-ANN四種模型的化學計量學多組分分析平檯,對譜帶混疊嚴重的5種大氣有機毒物——苯、甲苯、甲醇、氯倣和丙酮進行瞭定性定量測定,比較瞭4種模型的誤差,結果錶明,PLS-BP-ANN模型得到的結果最好.
채용편최소이승법(PLS)화주성분분석법(PCA)대광보수거진행주성분제취,병이용유전산법(GA)대파장진행선택,척제불상관적변량,체도압축수거적목적;채용반향전파인공신경망락(BP-ANN)방법,대다조분체계진행정성정량분석.건립료일개PLS-BP-ANN、PCA-BP-ANN、GA-BP-ANN화BP-ANN사충모형적화학계량학다조분분석평태,대보대혼첩엄중적5충대기유궤독물——분、갑분、갑순、록방화병동진행료정성정량측정,비교료4충모형적오차,결과표명,PLS-BP-ANN모형득도적결과최호.
The principal component of spectrum data is extracted through the methods of partial least squares(PLS) and principal component analysis(PCA),and the wavelength is selected based on genetic algorithm(GA) by removing uncorrelated variables for the sake of data compressing.The qualitative and quantitative analysis of multi-component system is performed through BP-ANN method.The chemo metrics multi-component analysis platform composed of PLS-BP-ANN,PCA-BP-ANN,GA-BP-ANN and BP-ANN models performs the qualitative and quantitative analysis of five air toxics(benzene,toluene,methanol,chloroform and acetone) whose absorption bands overlap seriously.The prediction errors of the four models are compared,which shows that the PLS-BP-ANN model works best.