应用数学与计算数学学报
應用數學與計算數學學報
응용수학여계산수학학보
COMMUNICATION ON APPLIED MATHEMATICS AND COMPUTATION
2011年
2期
148-164
,共17页
最高阶导数%有理Sinc-barycentric插值%不规则区域%内层
最高階導數%有理Sinc-barycentric插值%不規則區域%內層
최고계도수%유리Sinc-barycentric삽치%불규칙구역%내층
highest derivatives%rational Sinc-barycentric interpolation%irregular domains%interior layer
为了求解不规则区域问题以及内部层的问题,讨论了一种基于最高阶导数插值逼近的Sinc有理插值方法.同时,给出了有理Sinc-barycentric插值公式,它可以有效地处理不规则区域上的混合边界条件.通过引入一个坐标变换,该方法被成功地应用于求解内层问题.数值实验证明该方法是有效的.
為瞭求解不規則區域問題以及內部層的問題,討論瞭一種基于最高階導數插值逼近的Sinc有理插值方法.同時,給齣瞭有理Sinc-barycentric插值公式,它可以有效地處理不規則區域上的混閤邊界條件.通過引入一箇坐標變換,該方法被成功地應用于求解內層問題.數值實驗證明該方法是有效的.
위료구해불규칙구역문제이급내부층적문제,토론료일충기우최고계도수삽치핍근적Sinc유리삽치방법.동시,급출료유리Sinc-barycentric삽치공식,타가이유효지처리불규칙구역상적혼합변계조건.통과인입일개좌표변환,해방법피성공지응용우구해내층문제.수치실험증명해방법시유효적.
A rational Sine method based on the interpolation of the highest derivatives (RSIHD) is discussed in this paper to deal with interior layer problems and problems defined in irregular domains.A new formula is derived which is named the rational Sinc-barycentric interpolation to solve some problems with mixed nonhomogeneous boundary conditions and problems on irregular domains.Furthermore, a new transformation is applied in the RSIHD.Using this transformation,the RSIHD can deal with problems with an interior layer efficiently.Some numerical examples are given to verify the new method.