许昌学院学报
許昌學院學報
허창학원학보
JOURNAL OF XUCHANG UNIVERSIYT
2011年
5期
4-7
,共4页
四阶椭圆方程组%正解%Leray—Schauder度
四階橢圓方程組%正解%Leray—Schauder度
사계타원방정조%정해%Leray—Schauder도
fourth-order elliptic system%positive solutions%degree of Leray-Schauder
区别于常用方法对耦技巧与极小极大定理,利用Leray-Schauder度理论与强极大值定理,同时构造合适函数讨论在空间E×E=(H2(Ω)∩H0 1(Ω))×(H2(Ω)∩成(H0 1(Ω))中一类四阶椭圆方程组正解的存在性问题.
區彆于常用方法對耦技巧與極小極大定理,利用Leray-Schauder度理論與彊極大值定理,同時構造閤適函數討論在空間E×E=(H2(Ω)∩H0 1(Ω))×(H2(Ω)∩成(H0 1(Ω))中一類四階橢圓方程組正解的存在性問題.
구별우상용방법대우기교여겁소겁대정리,이용Leray-Schauder도이론여강겁대치정리,동시구조합괄함수토론재공간E×E=(H2(Ω)∩H0 1(Ω))×(H2(Ω)∩성(H0 1(Ω))중일류사계타원방정조정해적존재성문제.
This paper discusses the existence of a class of positive solutions for fourth-order elliptic system in space E×E=(H2(Ω)∩H0 1(Ω))×(H2(Ω)∩(H0 1(Ω))by using Leray-Schauder degree theory and strong maximum principle and constructing proper function instead of using coupling method and minimax theorem.