软件学报
軟件學報
연건학보
JOURNAL OF SOFTWARE
2004年
6期
869-880
,共12页
人体生物特征%掌纹识别%线特征的表示与匹配
人體生物特徵%掌紋識彆%線特徵的錶示與匹配
인체생물특정%장문식별%선특정적표시여필배
biometrics%palmprint recognition%line feature representation and matching
作为一种较新的生物特征,掌纹可用来进行人的身份识别.在用于身份识别的诸多特征中,掌纹线,包括主线和皱褶,是最重要的特征之一.本文为掌纹识别提出一种有效的掌纹线特征的表示和匹配方法,该方法定义了一个矢量来表示一个掌纹上的线特征,该矢量称为线特征矢量(1ine feature vector,简称LFV).线特征矢量是用掌纹线上各点的梯度大小和方向来构造的.该矢量不但含有掌纹线的结构信息,而且还含有这些线的强度信息,因而,线特征矢量不但能区分具有不同线结构的掌纹,同时也能区分那些具有相似的线结构但各线强度分布不同的掌纹.在掌纹匹配阶段,用互相关系数来衡量不同线特征矢量的相似性.实验表明,LFV方法无论是在速度、精度,还是在存储量方面都能满足联机生物识别的要求.
作為一種較新的生物特徵,掌紋可用來進行人的身份識彆.在用于身份識彆的諸多特徵中,掌紋線,包括主線和皺褶,是最重要的特徵之一.本文為掌紋識彆提齣一種有效的掌紋線特徵的錶示和匹配方法,該方法定義瞭一箇矢量來錶示一箇掌紋上的線特徵,該矢量稱為線特徵矢量(1ine feature vector,簡稱LFV).線特徵矢量是用掌紋線上各點的梯度大小和方嚮來構造的.該矢量不但含有掌紋線的結構信息,而且還含有這些線的彊度信息,因而,線特徵矢量不但能區分具有不同線結構的掌紋,同時也能區分那些具有相似的線結構但各線彊度分佈不同的掌紋.在掌紋匹配階段,用互相關繫數來衡量不同線特徵矢量的相似性.實驗錶明,LFV方法無論是在速度、精度,還是在存儲量方麵都能滿足聯機生物識彆的要求.
작위일충교신적생물특정,장문가용래진행인적신빈식별.재용우신빈식별적제다특정중,장문선,포괄주선화추습,시최중요적특정지일.본문위장문식별제출일충유효적장문선특정적표시화필배방법,해방법정의료일개시량래표시일개장문상적선특정,해시량칭위선특정시량(1ine feature vector,간칭LFV).선특정시량시용장문선상각점적제도대소화방향래구조적.해시량불단함유장문선적결구신식,이차환함유저사선적강도신식,인이,선특정시량불단능구분구유불동선결구적장문,동시야능구분나사구유상사적선결구단각선강도분포불동적장문.재장문필배계단,용호상관계수래형량불동선특정시량적상사성.실험표명,LFV방법무론시재속도、정도,환시재존저량방면도능만족련궤생물식별적요구.
A palmprint is a relative new biometric feature for personal authentication. Palm-lines, including the
principal lines and wrinkles, are one of the most important features used in palmprint recognition. This paper
proposes a novel approach of line feature representation and matching for palmprint recognition. To represent
palm-lines, a vector, called line feature vector (LFV), is defined by using the magnitude and orientation of the
gradient of the points on these lines. A LFV contains information about both the structure and thickness of the lines,
thus its capability to distinguish between palmprints, including those with similar line structures, is strong. A
correlation coefficient is employed to measure the similarity between LFVs of palmprints during the matching phase.
99.0% and 97.5% accurate rates are obtained in the one-to-one matching test and one-to-many matching test,
respectively. The results show that LFV is robust to some extent in rotation and translation of the images. The
accuracy, speed and storage of the proposed approach can meet the requirements of an online biometric recognition.