杭州师范大学学报(自然科学版)
杭州師範大學學報(自然科學版)
항주사범대학학보(자연과학판)
JOURNAL OF HANGZHOU NORMAL UNIVERSITY(NATURAL SCIENCE EDITION)
2011年
1期
27-33
,共7页
学习理论%正则化模型%函数重构%再生核Hilbert空间
學習理論%正則化模型%函數重構%再生覈Hilbert空間
학습이론%정칙화모형%함수중구%재생핵Hilbert공간
learning theory%regularization framework%function reconstruction%reproducing kernel Hilbert spaces
给出了一类正则化样本学习算法的误差分析. 借助于大数定律给出了样本误差, 用一种K-泛函给出了逼近误差的估计.
給齣瞭一類正則化樣本學習算法的誤差分析. 藉助于大數定律給齣瞭樣本誤差, 用一種K-汎函給齣瞭逼近誤差的估計.
급출료일류정칙화양본학습산법적오차분석. 차조우대수정률급출료양본오차, 용일충K-범함급출료핍근오차적고계.
This paper proposed the error analysis on a kind of regularization learning algorithm, offered the sample error by the large number law, and provided the estimation for approximation error with a K-functional.