世界胃肠病学杂志(英文版)
世界胃腸病學雜誌(英文版)
세계위장병학잡지(영문판)
WORLD JOURNAL OF GASTROENTEROLOGY
2008年
28期
4462-4472
,共11页
Fatty liver%Metabolomics%Energy restriction%Whey protein%Dietary calcium
AIM: To characterise the effect of energy restriction (ER) on liver lipid and primary metabolite profile by using metabolomic approach. We also investigated whether the effect of energy restriction can be further enhanced by modification of dietary protein source and calcium.METHODS: Liver metabolomic profile of lean and obese C57BI/6] mice (n = 10/group) were compared with two groups of weight-reduced mice. ER was performed on control diet and whey protein-based high-calcium diet (whey + Ca). The metabolomic an alyses were performed using the UPLC/MS based lipidomic platform and the HPLC/MS/MS based primary metabolite platform.RESULTS: ER on both diets significantly reduced hepatic lipid accumulation and lipid droplet size, while only whey + Ca diet significantly decreased blood glucose (P < 0.001) and serum insulin (P < 0.01).In hepatic lipid species the biggest reduction was in the level of triacylglycerols and ceramides while the level of cholesterol esters was significantly increased during ER. Interestingly, diacylglycerol to phospholipidratio, an indicator of relative amount of diabetogenic diglyceride species, was increased in the control Ergroup, but decreased in the whey + Ca ER group (P< 0.001, vs obese). ER on whey + Ca diet also totally reversed the obesity induced increase in the relative level of lipotoxic ceramides (P < 0.001, vs obese; P> 0.05, vs lean). These changes were accompanied with up-regulated TCA cycle and pentose phosphate pathway metabolites.CONCLUSION: ER-induced changes on hepatic metabolomic profile can be significantly affected by dietary protein source. The therapeutic potential of whey protein and calcium should be further studied.