煤炭转化
煤炭轉化
매탄전화
COAL CONVERSION
2010年
2期
14-18,26
,共6页
毛学锋%张晓静%高振楠%杜淑凤%刘敏%谷小会
毛學鋒%張曉靜%高振楠%杜淑鳳%劉敏%穀小會
모학봉%장효정%고진남%두숙봉%류민%곡소회
煤液化中油%生成机理%高级酚%高分油
煤液化中油%生成機理%高級酚%高分油
매액화중유%생성궤리%고급분%고분유
CLMO(coal liquefaction middle oils)%producing mechanism%high-grade phenols%BHTPSD(bottoms from high-temperature and high-pressure separator distillates)
煤液化中油(220 ℃~260 ℃)馏分中含有大量的酚类化合物,其质量分数约20%~25%,其酚类化合物主要是由苯酚、(烷基)苯酚、(烷基)萘酚、(烷基)茚满酚和联苯酚等类型组成.考察了煤液化过程中反应温度、Mo系催化剂和添加高分油三种工艺条件对煤液化中油馏分中不同酚类的影响.结果表明,升高反应温度和加入Mo系催化剂能增加煤液化油中总粗酚产率,而添加高分油方式则不太明显;另外,添加高分油方式可以促进高级酚类中间体发生裂解、脱烷基和脱羟基等二次反应向生成分子量更小、结构更简单的低级酚类进行转化,而通过Mo系催化剂的加入可以抑制部分高级酚类向低级酚类的转化.
煤液化中油(220 ℃~260 ℃)餾分中含有大量的酚類化閤物,其質量分數約20%~25%,其酚類化閤物主要是由苯酚、(烷基)苯酚、(烷基)萘酚、(烷基)茚滿酚和聯苯酚等類型組成.攷察瞭煤液化過程中反應溫度、Mo繫催化劑和添加高分油三種工藝條件對煤液化中油餾分中不同酚類的影響.結果錶明,升高反應溫度和加入Mo繫催化劑能增加煤液化油中總粗酚產率,而添加高分油方式則不太明顯;另外,添加高分油方式可以促進高級酚類中間體髮生裂解、脫烷基和脫羥基等二次反應嚮生成分子量更小、結構更簡單的低級酚類進行轉化,而通過Mo繫催化劑的加入可以抑製部分高級酚類嚮低級酚類的轉化.
매액화중유(220 ℃~260 ℃)류분중함유대량적분류화합물,기질량분수약20%~25%,기분류화합물주요시유분분、(완기)분분、(완기)내분、(완기)인만분화련분분등류형조성.고찰료매액화과정중반응온도、Mo계최화제화첨가고분유삼충공예조건대매액화중유류분중불동분류적영향.결과표명,승고반응온도화가입Mo계최화제능증가매액화유중총조분산솔,이첨가고분유방식칙불태명현;령외,첨가고분유방식가이촉진고급분류중간체발생렬해、탈완기화탈간기등이차반응향생성분자량경소、결구경간단적저급분류진행전화,이통과Mo계최화제적가입가이억제부분고급분류향저급분류적전화.
CT High-abundance content-rich phenolic compounds are existed in the CLMO. The content of phenolic compounds is about 20%-25%. It is formed from phenol, (alkyl)phenol, (alkyl)naphthol, (alkyl)indanols and phenylphenol. It is crucial to investigate the factors that determine the contents and compositions of phenolic compounds, in order to understand the mechanism how phenolic compounds are produced better. In this paper, the effects of three process conditions is investigated, including reaction temperature, Mo catalyst and addition of BHTPSD, on the content distribution of phenolic compounds in CLMO. we have found out that both the addition of catalyst and the increase of reaction temperature lead to the enhanced yield of crude phenol while addition of BHTPSD has insignificant effect. In addition, addition of BHTPSD help convert high-level phenolic intermediates to lower-molecular-weight, simpler-structure, low-level phenols by means of cleavage, hydrodealkylation, and dehydroxylation. In contrast, the addition of Mo catalyst greatly inhibits the transformation from high-grade phenols to low-grade phenols.