上海大学学报(英文版)
上海大學學報(英文版)
상해대학학보(영문판)
JOURNAL OF SHANGHAL UNIVERSITY
2003年
1期
28-34
,共7页
boundary element method(BEM)%singular boundary integral%symmetrical integration%distance transformation%numerical evaluation
Stemming from the definition of the Cauchy principal values (CPV) integrals, a newly developed symmetrical quadrature scheme was proposed in the paper for the accurate numerical evaluation of the singular boundary integrals in the sense of CPV encountered in the boundary element method. In the case of inner-element singularities, the CPV integrals could be evaluated in a straightforward way by dividing the element into the symmetrical part and the remainder(s). And in the case of end-singularities, the CPV integrals could be evaluated simply by taking a tangential distance transformation of the integrand after cutting out a symmetrical tiny zone around the singular point. In both cases, the operations are no longer necessary before the numerical implementation, which involves the dull routine work to separate out singularities from the integral kernels. Numerical examples were presented for both the two-and the three-dimensional boundary integrals in elasticity. Comparing the numerical results with those by other approaches demonstrates the feasibility and the effectiveness of the proposed scheme.