系统仿真学报
繫統倣真學報
계통방진학보
JOURNAL OF SYSTEM SIMULATION
2007年
17期
3937-3939
,共3页
延时微分方程%数值稳定性%块θ-方法%L-稳定性
延時微分方程%數值穩定性%塊θ-方法%L-穩定性
연시미분방정%수치은정성%괴θ-방법%L-은정성
delay differential equation%numerical stability%block θ-method%L-stability
讨论了带有多个滞时量的延时微分方程的数值稳定性,分析了用块θ-方法求解多延迟微分方程GPm-稳定和GPLm-稳定的条件,基于Lagrange插值,证明了块θ-方法GPm-稳定的充分必要条件是方法是A-稳定的,块θ-方法GPLm-稳定的充分必要条件是θ=1.
討論瞭帶有多箇滯時量的延時微分方程的數值穩定性,分析瞭用塊θ-方法求解多延遲微分方程GPm-穩定和GPLm-穩定的條件,基于Lagrange插值,證明瞭塊θ-方法GPm-穩定的充分必要條件是方法是A-穩定的,塊θ-方法GPLm-穩定的充分必要條件是θ=1.
토론료대유다개체시량적연시미분방정적수치은정성,분석료용괴θ-방법구해다연지미분방정GPm-은정화GPLm-은정적조건,기우Lagrange삽치,증명료괴θ-방법GPm-은정적충분필요조건시방법시A-은정적,괴θ-방법GPLm-은정적충분필요조건시θ=1.
The stability behavior of numerical solution for delay differential equations with many delays was studied. The conditions of GPmstability and GPLmstability of blockθ-method for delay differential equations with many delays were discussed. By Lagrange Interpolation, it is shown that blockθ-method is GPm-stable if and only if it is A-stable, block-θ method is GPLm-stable if and only if θ=1.