西北工业大学学报
西北工業大學學報
서북공업대학학보
JOURNAL OF NORTHWESTERN POLYTECHNICAL UNIVERSITY
2010年
1期
138-142
,共5页
翼型结冰模拟%变形网格技术%空气-水滴两相流%非定常N-S方程
翼型結冰模擬%變形網格技術%空氣-水滴兩相流%非定常N-S方程
익형결빙모의%변형망격기술%공기-수적량상류%비정상N-S방정
Navier Stokes equations%ice accretion%grid deformation technique%two-phase flow model
文章通过计算流体力学的方法对翼型结冰进行了预测.针对拉格朗日法求解水滴收集特性计算工作量太大的缺点,引入水滴流场的概念,通过求解空气-水滴两相流场的欧拉方法,获得翼型表面水滴收集特性.结冰计算过程中网格采用变形网格技术得到,既保证了网格质量又减少了网格生成的工作量,采用有限体积法及LU-SGS隐式时间推进数值求解N-S及水滴运动方程.建立了对应于霜冰和光冰的冰增长模型.通过对NACA0012翼型霜冰和光冰的计算验证了该方法是有效的.
文章通過計算流體力學的方法對翼型結冰進行瞭預測.針對拉格朗日法求解水滴收集特性計算工作量太大的缺點,引入水滴流場的概唸,通過求解空氣-水滴兩相流場的歐拉方法,穫得翼型錶麵水滴收集特性.結冰計算過程中網格採用變形網格技術得到,既保證瞭網格質量又減少瞭網格生成的工作量,採用有限體積法及LU-SGS隱式時間推進數值求解N-S及水滴運動方程.建立瞭對應于霜冰和光冰的冰增長模型.通過對NACA0012翼型霜冰和光冰的計算驗證瞭該方法是有效的.
문장통과계산류체역학적방법대익형결빙진행료예측.침대랍격랑일법구해수적수집특성계산공작량태대적결점,인입수적류장적개념,통과구해공기-수적량상류장적구랍방법,획득익형표면수적수집특성.결빙계산과정중망격채용변형망격기술득도,기보증료망격질량우감소료망격생성적공작량,채용유한체적법급LU-SGS은식시간추진수치구해N-S급수적운동방정.건립료대응우상빙화광빙적빙증장모형.통과대NACA0012익형상빙화광빙적계산험증료해방법시유효적.
Aim. We apply the model employed by Refs. 3, 4 and 5 but differ from their method in that we employ several approximate unsteady processes instead of their several quasi-steady processes. Section 1 of the full paper explains how to generate the initial computational grid by solving elliptic equations and by employing the modified TFI method based on the interpolation of block corner displacements during the grid deformation per time step in unsteady flow simulation. Section 2 uses the Eulerian two-phase flow model for the air flow containing water droplets to compute the trajectories of the water droplets. Its core consists of: (1) we solve the Navier-Stokes (N-S) equations with a conventional algorithm, which includes cell-centered finite volume method and a fully implicit solver based on LU-SGS and which completes the solution of the N-S equations by introducing the B-L algebraic turbulence model; (2) using the above methods, we present numerical results in Fig. 2. Section 3 explains the calculation of ice shape; its core is that we determine the ice shape with the assumption that all droplets freeze at their points of impact and that the ice grows in the direction normal to the surface. The computational results, presented in Figs. 3 through 8, are in good agreement with the available experimental data, thus showing preliminarily that the application of the existing Eulerian droplet impingement model, but with some improvements proposed by us, to numerically simulating ice accretion is indeed feasible.