黑龙江大学自然科学学报
黑龍江大學自然科學學報
흑룡강대학자연과학학보
JOURNAL OF NATURAL SCIENCE OF HEILONGJIANG UNIVERSITY
2008年
2期
218-221
,共4页
环面链环%辫子数
環麵鏈環%辮子數
배면련배%변자수
toms link%braid index
针对环面链环的辫子数的性质进行研究与分析.辫子数是一种重要的纽结不变量,Morton-Franks-Williams不等式HOMFLY多项式的形式给出了对链环的辫子数的下界估计,Yamada则以Seifert圈数的形式给出了上界的限制.利用Morton-Franks-Williams不等式,给出(m,n)-环面链环的辫子数是min(m,n).
針對環麵鏈環的辮子數的性質進行研究與分析.辮子數是一種重要的紐結不變量,Morton-Franks-Williams不等式HOMFLY多項式的形式給齣瞭對鏈環的辮子數的下界估計,Yamada則以Seifert圈數的形式給齣瞭上界的限製.利用Morton-Franks-Williams不等式,給齣(m,n)-環麵鏈環的辮子數是min(m,n).
침대배면련배적변자수적성질진행연구여분석.변자수시일충중요적뉴결불변량,Morton-Franks-Williams불등식HOMFLY다항식적형식급출료대련배적변자수적하계고계,Yamada칙이Seifert권수적형식급출료상계적한제.이용Morton-Franks-Williams불등식,급출(m,n)-배면련배적변자수시min(m,n).
The braid index of torus links, which is an important invariant in knot theory, is studied.Morton-Franks-Williams inequality gives the lower bound for the braid index in terms of the HOMFLYpolynomial, while Yamada gives the upper bound in terms of Seifert circles. By using the Morton -Franks - Williams inequality, it is shown that for the ( m, n) - toms link L, the braid index of L is min(m,n).