模式识别与人工智能
模式識彆與人工智能
모식식별여인공지능
Moshi Shibie yu Rengong Zhineng
2010年
1期
59-64
,共6页
吴德辉%李辉%刘青松%戴蓓蒨
吳德輝%李輝%劉青鬆%戴蓓蒨
오덕휘%리휘%류청송%대배천
因子分析%高斯混合模型(GMM)超矢量%支持向量机(SVM)%话者确认
因子分析%高斯混閤模型(GMM)超矢量%支持嚮量機(SVM)%話者確認
인자분석%고사혼합모형(GMM)초시량%지지향량궤(SVM)%화자학인
Factor Analysis%Gaussian Mixture Model(GMM)Super Vector%Support Vector Machine (SVM)%Speaker Verification
针对信道失配和统计模型区分性不足而导致话者确认性能下降问题,文中提出一种将因子分析信道失配补偿与支持向量机模型相结合的文本无关话者确认方法.在SVM话者模型前端采用高斯混合模型-背景模型(GMM-UBM)方法对语音特征参数进行聚类和升维,并利用因子分析(FA)方法,对聚类获得的超矢量进行信道补偿后作为基于SVM话者确认的输入特征,从而有效解决SVM用于文本无关话者确认的大样本、升维问题,以及信道失配对性能影响问题.在NIST 06数据库上实验结果表明,文中方法比未做失配补偿的GMM-UBM系统、GMM-SVM系统在等误识率上有50%以上的改善,比做了FA失配补偿的GMM-UBM系统也有15.8%的改善.
針對信道失配和統計模型區分性不足而導緻話者確認性能下降問題,文中提齣一種將因子分析信道失配補償與支持嚮量機模型相結閤的文本無關話者確認方法.在SVM話者模型前耑採用高斯混閤模型-揹景模型(GMM-UBM)方法對語音特徵參數進行聚類和升維,併利用因子分析(FA)方法,對聚類穫得的超矢量進行信道補償後作為基于SVM話者確認的輸入特徵,從而有效解決SVM用于文本無關話者確認的大樣本、升維問題,以及信道失配對性能影響問題.在NIST 06數據庫上實驗結果錶明,文中方法比未做失配補償的GMM-UBM繫統、GMM-SVM繫統在等誤識率上有50%以上的改善,比做瞭FA失配補償的GMM-UBM繫統也有15.8%的改善.
침대신도실배화통계모형구분성불족이도치화자학인성능하강문제,문중제출일충장인자분석신도실배보상여지지향량궤모형상결합적문본무관화자학인방법.재SVM화자모형전단채용고사혼합모형-배경모형(GMM-UBM)방법대어음특정삼수진행취류화승유,병이용인자분석(FA)방법,대취류획득적초시량진행신도보상후작위기우SVM화자학인적수입특정,종이유효해결SVM용우문본무관화자학인적대양본、승유문제,이급신도실배대성능영향문제.재NIST 06수거고상실험결과표명,문중방법비미주실배보상적GMM-UBM계통、GMM-SVM계통재등오식솔상유50%이상적개선,비주료FA실배보상적GMM-UBM계통야유15.8%적개선.
The poor performance of speaker verification system results from the channel mismatch and the lack of distinction between statistical models.A text-independent speaker verification method is proposed which combines the channel compensation based on factor analysis and the discriminative support vector machine(SVM)model.Gaussian mixture model(GMM)is used to make the speech parameter clustered and ascended,then the channel information of GMM mean super-vectors is wiped off by using factor analysis.The parameters,which are used as inputting parameters,are employed for the construction of SVM speaker verification system.The proposed method solves the problems of large samples,dimension raising and channel mismatch effectively when SVM is used for the text-independent speaker verification.Experimental results on NIST 06 male speaker corpus show that the proposed method improves system performance.Compared with the baseline system Gaussian mixture model-universal background model(GMM-UBM),GMM-SVM without channel compensation,the system improves the equal error rate(EER)more than 50%.Compared with the system factor analysis(FA)-GMM-UBM which uses channel compensation based on factor analysis without discriminative models,it also gets the improvement of EER by 15.8%.