计算机工程
計算機工程
계산궤공정
COMPUTER ENGINEERING
2010年
2期
184-185,188
,共3页
门阵列%布局%遗传算法%模拟退火
門陣列%佈跼%遺傳算法%模擬退火
문진렬%포국%유전산법%모의퇴화
gate array%placement%Genetic Algorithm(GA)%Simulated Annealing(SA)
为实现门阵列模式布局,将遗传算法与模拟退火算法相结合,提出一种新的遗传模拟退火算法,利用遗传算法进行全局搜索,利用模拟退火法进行局部搜索,在进化过程中采用精英保留策略,对进化结果进行有选择的模拟退火操作,既加强了局部搜索能力又防止陷入局部最优.实验结果表明,与传统遗传算法相比,该算法能够有效提高全局搜索能力.
為實現門陣列模式佈跼,將遺傳算法與模擬退火算法相結閤,提齣一種新的遺傳模擬退火算法,利用遺傳算法進行全跼搜索,利用模擬退火法進行跼部搜索,在進化過程中採用精英保留策略,對進化結果進行有選擇的模擬退火操作,既加彊瞭跼部搜索能力又防止陷入跼部最優.實驗結果錶明,與傳統遺傳算法相比,該算法能夠有效提高全跼搜索能力.
위실현문진렬모식포국,장유전산법여모의퇴화산법상결합,제출일충신적유전모의퇴화산법,이용유전산법진행전국수색,이용모의퇴화법진행국부수색,재진화과정중채용정영보류책략,대진화결과진행유선택적모의퇴화조작,기가강료국부수색능력우방지함입국부최우.실험결과표명,여전통유전산법상비,해산법능구유효제고전국수색능력.
In order to implement gate array mode placement, Genetic Algorithm(GA) is combined with Simulated Annealing(SA) algorithm. A novel GASA algorithm is proposed. The GA is served as the main flow of the new algorithm for global search, while the SA algorithm adjusts local search. In this process, excellent results are retained and simulated annealing, which strengthens capabilities of local search and avoids trapping in the local optimum. Experimental results show that, compared with traditional GA, this algorithm can promote the global search capacity effectively.