计算机应用研究
計算機應用研究
계산궤응용연구
APPLICATION RESEARCH OF COMPUTERS
2009年
12期
4446-4448
,共3页
双演化%人工鱼群算法%文化算法%混合算法
雙縯化%人工魚群算法%文化算法%混閤算法
쌍연화%인공어군산법%문화산법%혼합산법
dual evolution%artificial fish swarm algorithm(AFSA)%cultural algorithm(CA)%hybrid algorithm
提出一种基于人工鱼群和文化算法的新型混合全局优化算法,该混合算法的思想是将人工鱼群嵌入文化算法框架中,作为种群空间的一个进化过程;通过从进化种群中获得的知识组成知识空间,两空间具有各自群体并独立并行演化,从而实现增加人工鱼群的群体多样性.最后通过数值实例仿真结果表明,本算法具有较高的计算精度和收敛速度.
提齣一種基于人工魚群和文化算法的新型混閤全跼優化算法,該混閤算法的思想是將人工魚群嵌入文化算法框架中,作為種群空間的一箇進化過程;通過從進化種群中穫得的知識組成知識空間,兩空間具有各自群體併獨立併行縯化,從而實現增加人工魚群的群體多樣性.最後通過數值實例倣真結果錶明,本算法具有較高的計算精度和收斂速度.
제출일충기우인공어군화문화산법적신형혼합전국우화산법,해혼합산법적사상시장인공어군감입문화산법광가중,작위충군공간적일개진화과정;통과종진화충군중획득적지식조성지식공간,량공간구유각자군체병독립병행연화,종이실현증가인공어군적군체다양성.최후통과수치실례방진결과표명,본산법구유교고적계산정도화수렴속도.
This paper proposed a hybrid global optimization algorithm based on artificial fish swarm and cultural algorithm. The algorithm embedded in the cultural algorithm framework consisted of an AFSA-based main population space and a knowledge spec from the evolving population, which respectively had its own population to evolve independently and parallel. The mechanism improved the population diversity. Finally by comparison computed result of the example, it can be found that this proposed algorithm illustrates its higher the computational accuracy and convergence rate.